
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134602417
https://plusone.google.com/share?url=http://www.informit.com/title/9780134602417
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134602417
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134602417/Free-Sample-Chapter

Microservices

This page intentionally left blank

Microservices

Flexible Software Architecture

Eberhard Wolff

Boston • Columbus • Indianapolis • New York • San Francisco
Amsterdam • Cape Town • Dubai • London • Madrid • Milan
Munich • Paris • Montreal • Toronto • Delhi • Mexico City
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Editor-in-Chief
Mark Taub

Acquisitions Editor
Chris Guzikowski

Development Editor
Chris Zahn

Managing Editor
Sandra Schroeder

Project Editor
Lori Lyons

Production Manager
Dhayanidhi

Copy Editor
Warren Hapke

Indexer
Erika Millen

Proofreader
Sudhakaran

Editorial Assistant
Olivia Basegio

Cover Designer
Chuti Prasertsith

Compositor
codeMantra

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors
or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.
com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2016952028

Copyright © 2017 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permissions, request forms and the appropriate contacts
within the Pearson Education Global Rights & Permissions Department, please visit
www.pearsoned.com/permissions/.

ISBN-13: 978-0-134-60241-7
ISBN-10: 0-134-60241-2

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.
First printing: October 2016

http://www.pearsoned.com/permissions/

To my family and friends for their support.

And to the computing community for all the fun it
has provided to me.

This page intentionally left blank

vii

Contents at a Glance

Preface . xxv

Part I: Motivation and Basics . 1

Chapter 1: Preliminaries . 3

Chapter 2: Microservice Scenarios . 11

Part II: Microservices: What, Why, and Why Not? 25

Chapter 3: What Are Microservices? . 27

Chapter 4: Reasons for Using Microservices . 55

Chapter 5: Challenges . 69

Chapter 6: Microservices and SOA . 81

Part III: Implementing Microservices 95

Chapter 7: Architecture of Microservice-Based Systems 99

Chapter 8: Integration and Communication . 163

Chapter 9: Architecture of Individual Microservices 193

Chapter 10: Testing Microservices and Microservice-Based Systems 213

Chapter 11: Operations and Continuous Delivery of Microservices 237

Chapter 12: Organizational Effects of a Microservices-Based
 Architecture . 269

Part IV: Technologies . 301

Chapter 13: Example of a Microservices-Based Architecture 303

Chapter 14: Technologies for Nanoservices . 343

Chapter 15: Getting Started with Microservices . 369

Index . 375

This page intentionally left blank

ix

Contents

Preface . xxv

Acknowledgments . xxxi

About the Author . xxxiii

Part I: Motivation and Basics . 1

Chapter 1: Preliminaries . 3

1.1 Overview of Microservice . 3
Microservice: Preliminary Definition . 3
Deployment Monoliths . 4

1.2 Why Microservices? . 4
Strong Modularization . 5
Easy Replaceability . 5
Sustainable Development . 6
Further Development of Legacy Applications 6
Time-to-Market . 6
Independent Scaling . 7
Free Choice of Technologies . 7
Continuous Delivery . 7

1.3 Challenges . 8
1.4 Conclusion . 9

Chapter 2: Microservice Scenarios . 11

2.1 Modernizing an E-Commerce Legacy Application 11
Scenario . 11
Reasons to Use Microservices . 12
Slow Continuous Delivery Pipeline . 12
Parallel Work Is Complicated . 12
Bottleneck During Testing . 13
Approach . 14
Challenges . 14

Contentsx

Entire Migration Lengthy . 15
Testing Remains a Challenge . 15
Current Status of Migration . 15
Creating Teams . 16
Advantages . 17
Conclusion . 17
Rapid and Independent Development of New Features 17
Influence on the Organization . 18
Amazon Has Been Doing It for a Long Time 18

2.2 Developing a New Signaling System . 19
Scenario . 19
Reasons to Use Microservices . 20
Distributed System . 20
Technology Stack per Team . 21
Integration of Other Systems . 21
Challenges . 21
High Technological Complexity . 21
Advantages . 22
Verdict . 22

2.3 Conclusion . 23
Essential Points . 23

Part II: Microservices: What, Why, and Why Not? 25

Chapter 3: What Are Microservices? . 27

3.1 Size of a Microservice . 27
Modularization . 28
Distributed Communication . 28
Sustainable Architecture . 29
Refactoring . 29
Team Size . 30
Infrastructure . 30
Replaceability . 31
Transactions and Consistency . 31
Consistency . 32
Compensation Transactions across Microservices 32
Summary . 33

Contents xi

3.2 Conway’s Law . 35
Reasons for the Law . 36
The Law as Limitation . 36
The Law as Enabler . 38
The Law and Microservices . 39

3.3 Domain-Driven Design and Bounded Context 40
Ubiquitous Language . 41
Building Blocks . 41
Bounded Context . 42
Collaboration between Bounded Contexts 44
Bounded Context and Microservices . 45
Large-Scale Structure . 46

3.4 Why You Should Avoid a Canonical Data Model
 (Stefan Tilkov) . 47

3.5 Microservices with a UI? . 50
Technical Alternatives . 50
Self-Contained System . 51

3.6 Conclusion . 52
Essential Points . 53

Chapter 4: Reasons for Using Microservices . 55

4.1 Technical Benefits . 55
Replacing Microservices . 56
Sustainable Software Development . 57
Handling Legacy . 57
Continuous Delivery . 59
Scaling . 61
Robustness . 61
Free Technology Choice . 62
Independence . 63

4.2 Organizational Benefits . 63
Smaller Projects . 65

4.3 Benefits from a Business Perspective . 65
Parallel Work on Stories . 65

4.4 Conclusion . 67
Essential Points . 68

Contentsxii

Chapter 5: Challenges . 69

5.1 Technical Challenges . 69
Code Dependencies . 71
Unreliable Communication . 73
Technology Pluralism . 73

5.2 Architecture . 74
Architecture = Organization . 74
Architecture and Requirements . 74
Refactoring . 75
Agile Architecture . 75
Summary . 76

5.3 Infrastructure and Operations . 76
Continuous Delivery Pipelines . 77
Monitoring . 77
Version Control . 77

5.4 Conclusion . 78
Essential Points . 78

Chapter 6: Microservices and SOA . 81

6.1 What Is SOA? . 81
Introducing SOA . 84
Services in an SOA . 84
Interfaces and Versioning . 85
External Interfaces . 85
Interfaces Enforce a Coordination of Deployments 85
Coordination and Orchestration . 86
Technologies . 86

6.2 Differences between SOA and Microservices 87
Communication . 87
Orchestration . 87
Flexibility . 87
Microservices: Project Level . 88
Synergies . 91

6.3 Conclusion . 91
Essential Points . 92

Contents xiii

Part III: Implementing Microservices 95

Chapter 7: Architecture of Microservice-Based Systems 99

7.1 Domain Architecture . 100
Strategic Design and Domain-Driven Design 100
Example Otto Shop . 101
Managing Dependencies . 101
Unintended Domain-Based Dependencies 102
Cyclic Dependencies . 103

7.2 Architecture Management . 104
Tools for Architecture Management . 104
Cycle-Free Software . 104
Microservices and Architecture Management 106
Tools . 107
Is Architecture Management Important? 107
Context Map . 108

7.3 Techniques to Adjust the Architecture . 110
Where Does Bad Architecture Come From? 110
Changes in Microservices . 111
Changes to the Overall Architecture . 111
Shared Libraries . 112
Transfer Code . 113
Reuse or Redundancy? . 114
Shared Service . 115
Spawn a New Microservice . 116
Rewriting . 117
A Growing Number of Microservices 117
Microservice-Based Systems Are Hard to Modify 117

7.4 Growing Microservice-Based Systems . 118
Planning Architecture? . 118
Start Big . 119
Start Small? . 120
Limits of Technology . 121
Replaceability as a Quality Criterion 121
The Gravity of Monoliths . 121

Contentsxiv

Keep Splitting . 122
Global Architecture? . 122

7.5 Don’t Miss the Exit Point or How to Avoid the Erosion of a
 Microservice (Lars Gentsch) . 122

Incorporation of New Functionality 123
What Is Happening to the Microservice Here? 123
Criteria Arguing for a New Microservice Instead of

Extending an Existing One . 124
How to Recognize Whether the Creation of a New

Microservice Should Have Occurred Already 125
Conclusion . 125

7.6 Microservices and Legacy Applications 126
Breaking Up Code? . 126
Supplementing Legacy Applications 127
Enterprise Integration Patterns . 127
Limiting Integration . 129
Advantages . 129
Integration via UI and Data Replication 129
Content Management Systems . 130
Conclusion . 130
No Big Bang . 131
Legacy = Infrastructure . 131
Other Qualities . 132

7.7 Hidden Dependencies (Oliver Wehrens) 132
The Database . 133

7.8 Event-Driven Architecture . 134
7.9 Technical Architecture . 136

Technical Decisions for the Entire System 136
Sidecar . 137

7.10 Configuration and Coordination . 139
Consistency as Problem . 139
Immutable Server . 140
Alternative: Installation Tools . 140

7.11 Service Discovery . 141
Service Discovery = Configuration? 141
Technologies . 142

Contents xv

7.12 Load Balancing . 144
REST/HTTP . 144
Central Load Balancer . 145
A Load Balancer per Microservice . 145
Technologies . 145
Service Discovery . 146
Client-Based Load Balancing . 147
Load Balancing and Architecture . 148

7.13 Scalability . 148
Scaling, Microservices, and Load Balancing 149
Dynamic Scaling . 149
Microservices: Advantages for Scaling 150
Sharding . 150
Scalability, Throughput, and Response Times 151

7.14 Security . 151
Security and Microservices . 152
OAuth2 . 152
Possible Authorization Grants . 153
JSON Web Token (JWT) . 154
OAuth2, JWT, and Microservices . 155
Technologies . 155
Additional Security Measures . 156
Hashicorp Vault . 157
Additional Security Goals . 158

7.15 Documentation and Metadata . 159
Outdated Documentation . 160
Access to Documentation . 160

7.16 Conclusion . 161
Essential Points . 162

Chapter 8: Integration and Communication . 163

8.1 Web and UI . 164
Multiple Single-Page-Apps . 164
SPA per Microservice . 165
Asset Server for Uniformity . 166
A Single-Page App for All Microservices 167
HTML Applications . 168

Contentsxvi

ROCA . 168
Easy Routing . 169
Arrange HTML with JavaScript . 170
Front-End Server . 171
Mobile Clients and Rich Clients . 172
Organizational Level . 173
Back-End for Each Front-End . 174

8.2 REST . 175
Cache and Load Balancer . 176
HATEOAS . 177
HAL . 177
XML . 177
HTML . 178
JSON . 178
Protocol Buffer . 178
RESTful HTTP Is Synchronous . 179

8.3 SOAP and RPC . 179
Flexible Transport . 179
Thrift . 180

8.4 Messaging . 180
Messages and Transactions . 181
Messaging Technology . 182

8.5 Data Replication . 184
Replication . 185
Problems: Redundancy and Consistency 185
Implementation . 186
Batch . 186
Event . 186

8.6 Interfaces: Internal and External . 187
External Interfaces . 188
Separating Interfaces . 188
Implementing External Interfaces . 188
Semantic Versioning . 189
Postel’s Law or the Robustness Principle 189

8.7 Conclusion . 190
Client . 190
Logic Layer . 191

Contents xvii

Data Replication . 191
Interfaces and Versions . 192
Essential Points . 192

Chapter 9: Architecture of Individual Microservices 193

9.1 Domain Architecture . 193
Cohesion . 194
Encapsulation . 194
Domain-Driven Design . 194
Transactions . 194

9.2 CQRS . 195
CQRS . 195
Microservices and CQRS . 196
Advantages . 196
Challenges . 197

9.3 Event Sourcing . 197
9.4 Hexagonal Architecture . 199

Hexagons or Layers? . 200
Hexagonal Architectures and Microservices 201
An Example . 201

9.5 Resilience and Stability . 203
Timeout . 203
Circuit Breaker . 203
Bulkhead . 204
Steady State . 205
Fail Fast . 205
Handshaking . 205
Test Harness . 206
Uncoupling via Middleware . 206
Stability and Microservices . 206
Resilience and Reactive . 207
Hystrix . 207

9.6 Technical Architecture . 208
Process Engines . 208
Statelessness . 209
Reactive . 209
Microservices without Reactive? . 210

Contentsxviii

9.7 Conclusion . 211
Essential Points . 212

Chapter 10: Testing Microservices and Microservice-Based Systems 213

10.1 Why Tests? . 213
Tests Minimize Expenditure . 214
Tests = Documentation . 214
Test-Driven Development . 215

10.2 How to Test? . 215
Unit Tests . 215
Integration Tests . 216
UI Tests . 216
Manual Tests . 217
Load Tests . 217
Test Pyramid . 217
Continuous Delivery Pipeline . 220

10.3 Mitigate Risks at Deployment . 220
10.4 Testing the Overall System . 222

Shared Integration Tests . 223
Avoiding Integration Tests of the Overall System 224

10.5 Testing Legacy Applications and Microservices 225
Relocating Tests of the Legacy Application 225
Integration Test: Legacy Application and Microservices . . . 226

10.6 Testing Individual Microservices . 227
Reference Environment . 228
Stubs . 228

10.7 Consumer-Driven Contract Tests . 230
Components of the Contract . 230
Contracts . 230
Implementation . 231
Tools . 232

10.8 Testing Technical Standards . 233
10.9 Conclusion . 235

Essential Points . 236

Chapter 11: Operations and Continuous Delivery of Microservices 237

11.1 Challenges Associated with the Operation of Microservices . . . 237
Numerous Artifacts . 238

Contents xix

Delegate into Teams . 238
Unify Tools . 239
Specify Behavior . 239
Micro and Macro Architecture . 239
Templates . 240

11.2 Logging . 241
Logging for Microservices . 241
Technologies for Logging via the Network 242
ELK for Centralized Logging . 242
Scaling ELK . 243
Graylog . 244
Splunk . 244
Stakeholders for Logs . 245
Correlation IDs . 245
Zipkin: Distributed Tracing . 245

11.3 Monitoring . 246
Basic Information . 247
Additional Metrics . 248
Stakeholders . 248
Correlate with Events . 249
Monitoring = Tests? . 249
Dynamic Environment . 250
Concrete Technologies . 250
Enabling Monitoring in Microservices 252
Metrics . 252
StatsD . 252
collectd . 252
Technology Stack for Monitoring . 252
Effects on the Individual Microservice 253

11.4 Deployment . 254
Deployment Automation . 254
Installation and Configuration . 256
Risks Associated with Microservice Deployments 256
Deployment Strategies . 256

11.5 Combined or Separate Deployment? (Jörg Müller) 258
11.6 Control . 259
11.7 Infrastructure . 260

Contentsxx

Virtualization or Cloud . 261
Docker . 261
Docker Container versus Virtualization 263
Communication between Docker Containers 263
Docker Registry . 264
Docker and Microservices . 264
Docker and Servers . 264
PaaS . 266

11.8 Conclusion . 266
Essential Points . 268

Chapter 12: Organizational Effects of a Microservices-Based
Architecture . 269

12.1 Organizational Benefits of Microservices 270
Technical Independence . 270
Separate Deployment . 270
Separate Requirement Streams . 271
Three Levels of Independence . 271

12.2 An Alternative Approach to Conway’s Law 273
The Challenges Associated with Conway’s Law 273
Collective Code Ownership . 274
Advantages of Collective Code Ownership 274
Disadvantages of Collective Code Ownership 275
Pull Requests for Coordination . 276

12.3 Micro and Macro Architecture . 277
Decision = Responsibility . 277
Who Creates the Macro Architecture? 278
Extent of the Macro Architecture . 279
Technology: Macro/Micro Architecture 280
Operations . 281
Domain Architecture . 282
Tests . 282

12.4 Technical Leadership . 284
Developer Anarchy . 284

12.5 DevOps . 285
DevOps and Microservices . 285
Do Microservices Necessitate DevOps? 286

Contents xxi

12.6 When Microservices Meet Classical IT Organizations
 (Alexander Heusingfeld) . 287

Pets versus Cattle . 287
Us versus Them . 288
Development versus Test versus Operations:

Change of Perspective . 288
For Operations There Is Never an “Entirely

Green Field” . 289
Conclusion . 290

12.7 Interface to the Customer . 290
Architecture Leads to Departments . 291

12.8 Reusable Code . 292
Client Libraries . 292
Reuse Anyhow? . 292
Reuse as Open Source . 293

12.9 Microservices without Changing the Organization? 295
Microservices without Changing the Organization 295
Evaluation . 296
Departments . 296
Operations . 296
Architecture . 297

12.10 Conclusion . 297
Essential Points . 299

Part IV: Technologies . 301

Chapter 13: Example of a Microservices-Based Architecture 303

13.1 Domain Architecture . 304
Separate Data Storages . 304
Lots of Communication . 305
Bounded Context . 305
Don’t Modularize Microservices by Data! 306

13.2 Basic Technologies . 306
HSQL Database . 307
Spring Data REST . 307
Spring Boot . 307
Spring Cloud . 308
Spring Cloud Netflix . 310

Contentsxxii

13.3 Build . 311
13.4 Deployment Using Docker . 313
13.5 Vagrant . 314

Networking in the Example Application 317
13.6 Docker Machine . 320
13.7 Docker Compose . 321
13.8 Service Discovery . 324

Eureka Client . 324
Configuration . 325
Eureka Server . 326

13.9 Communication . 327
Zuul: Routing . 327

13.10 Resilience . 329
Circuit Breaker . 329
Hystrix with Annotations . 330
Monitoring with the Hystrix Dashboard 331
Turbine . 331

13.11 Load Balancing . 333
Ribbon with Spring Cloud . 334

13.12 Integrating Other Technologies . 335
13.13 Tests . 336

Stubs . 336
Consumer-Driven Contract Test . 337

13.14 Experiences with JVM-Based Microservices in
 the Amazon Cloud (Sascha Möllering) 338

Conclusion . 340
13.15 Conclusion . 341

Essential Points . 341

Chapter 14: Technologies for Nanoservices . 343

14.1 Why Nanoservices? . 344
Minimum Size of Microservices is Limited 344
Compromises . 345
Desktop Applications . 346

14.2 Nanoservices: Definition . 346
14.3 Amazon Lambda . 347

Calling Lambda Functions . 348
Evaluation for Nanoservices . 348
Conclusion . 349

Contents xxiii

14.4 OSGi . 350
The OSGi Module System . 350
Handling Bundles in Practice . 351
Evaluation for Nanoservices . 353
Conclusion . 353

14.5 Java EE . 354
Nanoservices with Java EE . 355
Microservices with Java EE? . 355
An Example . 356

14.6 Vert.x . 357
Conclusion . 359

14.7 Erlang . 360
Evaluation for Nanoservices . 362

14.8 Seneca . 363
Evaluation for Nanoservices . 365

14.9 Conclusion . 366
Essential Points . 367

Chapter 15: Getting Started with Microservices . 369

15.1 Why Microservices? . 369
15.2 Roads towards Microservices . 370
15.3 Microservice: Hype or Reality? . 371
15.4 Conclusion . 372

Index . 375

This page intentionally left blank

xxv

Preface

Although “microservices” is a new term, the concepts that it represents have been
around for long time. In 2006, Werner Vogels (CTO at Amazon) gave a talk at the
JAOO conference presenting the Amazon Cloud and Amazon’s partner model. In
his talk he mentioned the CAP theorem, today the basis for NoSQL. In addition, he
spoke about small teams that develop and run services with their own databases.
Today this structure is called DevOps, and the architecture is known as micro
services.

Later I was asked to develop a strategy for a client that would enable them to inte-
grate modern technologies into their existing application. After a few attempts to
integrate the new technologies directly into the legacy code, we finally built a new
application with a completely different modern technology stack alongside the old
one. The old and the new application were only coupled via HTML links and via a
shared database. Except for the shared database, this is in essence a microservices
approach. That happened in 2008.

In 2009, I worked with another client who had divided his complete infrastructure
into REST services, each being developed by individual teams. This would also be
called microservices today. Many other companies with a web-based business model
had already implemented similar architectures at that time. Lately, I have also real-
ized how continuous delivery influences software architecture. This is another area
where microservices offer a number of advantages.

This is the reason for writing this book—a number of people have been pursuing
a microservices approach for a long time, among them some very experienced archi-
tects. Like every other approach to architecture, microservices cannot solve every
problem. However, this concept represents an interesting alternative to existing
approaches.

Overview of the Book

This book provides a detailed introduction to microservices. Architecture and organ-
ization are the main topics. However, technical implementation strategies are not
neglected. A complete example of a microservice-based system demonstrates a con-
crete technical implementation. The discussion of technologies for nanoservices

Prefacexxvi

illustrates that modularization does not stop with microservices. The book provides
all the necessary information for readers to start using microservices.

For Whom Is the Book Meant?

The book addresses managers, architects, and developers who want to introduce
microservices as an architectural approach.

Managers

Microservices work best when a business is organized to support a microservices-
based architecture. In the introduction, managers understand the basic ideas behind
microservices. Afterwards they can focus on the organizational impact of using
microservices.

Developers

Developers are provided with a comprehensive introduction to the technical aspects
and can acquire the necessary skills to use microservices. A detailed example of a
technical implementation of microservices, as well as numerous additional technolo-
gies, for example for nanoservices, helps to convey the basic concepts.

Architects

Architects get to know microservices from an architectural perspective and can at the
same time deepen their understanding of the associated technical and organizational
issues.

The book highlights possible areas for experimentation and additional informa-
tion sources. These will help the interested reader to test their new knowledge
 practically and delve deeper into subjects that are of relevance to them.

Structure and Coverage

The book is organized into four parts.

Part I: Motivation and Basics

The first part of the book explains the motivation for using microservices and the
foundation of the microservices architecture. Chapter 1, “Preliminaries,” presents

xxviiStructure and Coverage

the basic properties as well as the advantages and disadvantages of microservices.
Chapter 2, “Microservice Scenarios,” presents two scenarios for the use of microser-
vices: an e-commerce application and a system for signal processing. This section
provides some initial insights into microservices and points out contexts for
applications.

Part II: Microservices—What, Why, and Why Not?

Part II not only explains microservices in detail but also deals with their advantages
and disadvantages:

 • Chapter 3, “What Are Microservices,” investigates the definition of the term
“microservices” from three perspectives: the size of a microservice, Conway’s
Law (which states that organizations can only create specific software architec-
tures), and finally a technical perspective based on domain-driven Design and
Bounded Context.

 • The reasons for using microservices are detailed in Chapter 4, “Reasons for
Using Microservices.” Microservices have not only technical but also organi-
zational advantages, and there are good reasons for turning to microservices
from a business perspective.

 • The unique challenges posed by microservices are discussed in Chapter 5,
“Challenges.” Among these are technical challenges as well as problems related
to architecture, infrastructure, and operation.

 • Chapter 6, “Microservices and SOA,” aims at defining the differences between
microservices and SOA (service-oriented architecture). At first sight both concepts
seem to be closely related. However, a closer look reveals plenty of differences.

Part III: Implementing Microservices

Part III deals with the application of microservices and demonstrates how the
 advantages that were described in Part II can be obtained and how the associated
challenges can be solved.

 • Chapter 7, “Architecture of Microservice-Based Systems,” describes the archi-
tecture of microservices-based systems. In addition to domain architecture,
technical challenges are discussed.

 • Chapter 8, “Integration and Communication,” presents the different approaches
to the integration of and the communication between microservices. This

Prefacexxviii

includes not only communication via REST or messaging but also the integra-
tion of UIs and the replication of data.

 • Chapter 9, “Architecture of Individual Microservices,” shows possible
 architectures for microservices such as CQRS, Event Sourcing, or hexagonal
architecture. Finally, suitable technologies for typical challenges are addressed.

 • Testing is the main focus of Chapter 10, “Testing Microservices and
 Microservice-Based Systems.” Tests have to be as independent as possible to
enable the independent deployment of the different microservices. However,
the tests need to not only check the individual microservices, but also the sys-
tem in its entirety.

 • Operation and Continuous Delivery are addressed in Chapter 11, “Operations
and Continuous Delivery of Microservices.” Microservices generate a huge
number of deployable artifacts and thus increase the demands on the infra-
structure. This is a substantial challenge when introducing microservices.

 • Chapter 12, “Organizational Effects of a Microservices-Based Architecture,”
illustrates how microservices also influence the organization. After all, micro-
services are an architecture, which is supposed to influence and improve the
organization.

Part IV: Technologies

The last part of the book shows in detail and at the code level how microservices can
be implemented technically:

 • Chapter 13, “Example of a Microservices-Based Architecture,” contains an
exhaustive example for a microservices architecture based on Java, Spring
Boot, Docker, and Spring Cloud. This chapter aims at providing an applica-
tion, which can be easily run, that illustrates the concepts behind microser-
vices in practical terms and offers a starting point for the implementation of a
microservices system and experiments.

 • Even smaller than microservices are nanoservices, which are presented in
Chapter 14, “Technologies for Nanoservices.” Nanoservices require specific
technologies and a number of compromises. The chapter discusses different
technologies and their related advantages and disadvantages.

 • Chapter 15, “Getting Started with Microservices,” demonstrates how micro-
services can be adopted.

xxixPaths through the Book

Essays

The book contains essays that were written by experts of various aspects of micro-
services. The experts were asked to record their main findings about microservices
on approximately two pages. Sometimes these essays complement book chapters,
sometimes they focus on other topics, and sometimes they contradict passages in the
book. This illustrates that there is, in general, no single correct answer when it comes
to software architectures, but rather a collection of different opinions and possibili-
ties. The essays offer the unique opportunity to get to know different viewpoints in
order to subsequently develop an opinion.

Paths through the Book

The book offers content suitable for each type of audience. Of course, everybody
can and should read the chapters that are primarily meant for people with a different
type of job. However, the chapters focused on topics that are most relevant for a cer-
tain audience are indicated in Table P.1.

Table P.1 Paths through the Book

Chapter Developer Architect Manager

1 - Preliminaries X X X
2 - Microservice Scenarios X X X
3 - What Are Microservices? X X X
4 - Reasons for Using Microservices X X X
5 - Challenges X X X
6 - Microservices and SOA X X
7 - Architecture of Microservice-Based

Systems
X

8 - Integration and Communication X X
9 - Architecture of Individual

Microservices
X X

10 - Testing Microservices and
Microservice-Based Systems

X X

11 - Operations and Continuous
Delivery of Microservices

X X

(Continued)

Prefacexxx

Chapter Developer Architect Manager

12 - Organizational Effects of a
Microservices-Based Architecture

X

13 - Example of a Microservice-Based
Architecture

X

14 - Technologies for Nanoservices X X
15 - Getting Started with Microservices X X X

Readers who only want to obtain an overview are advised to concentrate on the
summary section at the end of each chapter. People who want to gain practical
knowledge should commence with Chapters 13 and 14, which deal with concrete
technologies and code.

The instructions for experiments, which are given in the sections “Try and Experi-
ment,” help deepen your understanding by providing practical exercises. Whenever a
chapter is of particular interest to you, you are encouraged to complete the related
exercises to get a better grasp of the topics presented in that chapter.

Supplementary Materials

Errata, links to examples, and additional information can be found at http://
 micro services-book.com/. The example code is available at https://github.com/
ewolff/microservice/.

Register your copy of Microservices at informit.com for convenient access to
downloads, updates, and corrections as they become available. To start the registra-
tion process, go to informit.com/register and log in or create an account. Enter the
product ISBN 9780134602417 and click Submit. Once the process is complete, you
will find any available bonus content under “Registered Products.”

Table P.1 Continued

https://www.github.com/ewolff/microservice/
https://www.github.com/ewolff/microservice/
http://www.microservices-book.com/
http://www.microservices-book.com/

xxxi

Acknowledgments

I would like to thank everybody with whom I have discussed microservices and all
the people who asked questions or worked with me—way too many to list them all.
The interactions and discussions were very fruitful and fun!

I would like to mention especially Jochen Binder, Matthias Bohlen,
Merten Driemeyer, Martin Eigenbrodt, Oliver B. Fischer, Lars Gentsch, Oliver Gierke,
Boris Gloger, Alexander Heusingfeld, Christine Koppelt, Andreas Krüger, Tammo
van Lessen, Sascha Möllering, André Neubauer, Till Schulte-Coerne, Stefan Tilkov,
Kai Tödter, Oliver Wolf, and Stefan Zörner.

As a native speaker, Matt Duckhouse has added some significant improvements to
the text and improved its readability.

My employer, innoQ, has also played an important role throughout the writing
process. Many of the discussions and suggestions of my innoQ colleagues are
reflected in the book.

Finally, I would like to thank my friends and family—especially my wife, whom I
have often neglected while working on the book. In addition, I would like to thank
her for the English translation of the book.

Of course, my thanks also go to all the people who have been working on the
 technologies that are mentioned in the book and thus have laid the foundation for
the development of microservices. Special thanks also due to the experts who shared
their knowledge of and experience with microservices in the essays.

Leanpub has provided me with the technical infrastructure to create the transla-
tion. It has been a pleasure to work with it, and it is quite likely that the translation
would not exist without Leanpub.

Addison-Wesley enabled me to take the English translation to the next level. Chris
Zahn, Chris Guzikowski, Lori Lyons and Dhayanidhi Karunanidhi provided excellent
support for that process.

Last but not least, I would like to thank dpunkt.verlag and René Schönfeldt, who
supported me very professionally during the genesis of the original German version.

This page intentionally left blank

xxxiii

About the Author

Eberhard Wolff, a Fellow at innoQ in Germany, has
more than 15 years of experience as an architect and
consultant working at the intersection of business and
technology. He has given talks and keynote addresses at
several international conferences, served on multiple
conference program committees, and written more
than 100 articles and books. His technological focus
is on modern architectures—often involving cloud,
 continuous delivery, DevOps, microservices, or NoSQL.

This page intentionally left blank

25

 PART II

Microservices: What, Why,
and Why Not?

Part II discusses the different facets of microservice-based architectures to present
the diverse possibilities offered by microservices. Advantages as well as disadvan-
tages are addressed so that the reader can evaluate what can be gained by using
microservices and which points require special attention and care during the imple-
mentation of microservice-based architectures.

Chapter 3, “What Are Microservices,” explains the term “microservice” in
detail. The term is dissected from different perspectives, which is essential for an
in-depth understanding of the microservice approach. Important issues are the size
of a microservice, Conway’s Law as organizational influence, and domain-driven
design particularly with respect to Bounded Context from a domain perspective.
Furthermore, the chapter addresses the question of whether a microservice should
contain a UI.

Chapter 4, “Reasons for Using Microservices,” focuses on the advantages of
microservices, taking alternatingly technical, organizational, and business perspectives.

Chapter 5, “Challenges,” deals with the associated challenges in the areas of
technology, architecture, infrastructure, and operation.

Chapter 6, “Microservices and SOA,” distinguishes microservices from service-
oriented architecture (SOA). By making this distinction microservices are viewed
from a new perspective, which helps to further clarify the microservices approach.
Besides, microservices have been frequently compared to SOAs.

This page intentionally left blank

27

Section 1.1 provided an initial definition of the term microservice. However, there
are a number of different ways to define microservices. The different definitions
are based on different aspects of microservices. They also show for which reasons
the use of microservices is advantageous. At the end of the chapter the reader
should have his or her own definition of the term microservice—depending on the
individual project scenario.

The chapter discusses the term microservice from different perspectives:

 • Section 3.1 focuses on the size of microservices.

 • Section 3.2 explains the relationship between microservices, architecture, and
organization by using the Conway’s Law.

 • Section 3.3 presents a domain architecture of microservices based on domain-
driven design (DDD) and bounded context.

 • Section 3.5 explains why microservices should contain a user interface (UI).

3.1 Size of a Microservice

The name “microservices” conveys the fact that the size of the service matters;
 obviously, microservices are supposed to be small.

Chapter 3

What Are Microservices?

Chapter 3 What Are Microservices?28

One way to define the size of a microservice is to count the lines of code (LOC).1
However, such an approach has a number of problems:

 • It depends on the programming language used. Some languages require more
code than others to express the same functionality—and microservices are
explicitly not supposed to predetermine the technology stack. Therefore,
defining microservices based on this metric is not very useful.

 • Finally, microservices represent an architecture approach. Architectures,
 however, should follow the conditions in the domain rather than adhering to
technical metrics such as LOC. Also for this reason attempts to determine size
based on code lines should be viewed critically.

In spite of the voiced criticism, LOC can be an indicator for a microservice.
Still, the question as to the ideal size of a microservice remains. How many LOC
may a microservice have? Even if there are no absolute standard values, there are
 nevertheless influencing factors, which may argue for larger or smaller microservices.

Modularization

One factor is modularization. Teams develop software in modules to be better able
to deal with its complexity; instead of having to understand the entire software
 package, developers only need to understand the module(s) they are working on as
well as the interplay between the different modules. This is the only way for a team to
work productively in spite of the enormous complexity of a typical software system.
In daily life there are often problems as modules get larger than originally planned.
This makes them hard to understand and hard to maintain, because changes require
an understanding of the entire module. Thus it is very sensible to keep microservices
as small as possible. On the other hand, microservices, unlike many other approaches
to modularization, have an overhead.

Distributed Communication

Microservices run within independent processes. Therefore, communication
between microservices is distributed communication via the network. For this type
of system, the “First Rule of Distributed Object Design”2 applies. This rule states
that systems should not be distributed if it can be avoided. The reason for this is that

1. http://yobriefca.se/blog/2013/04/28/micro-service-architecture/
2. http://martinfowler.com/bliki/FirstLaw.html

http://www.yobriefca.se/blog/2013/04/28/micro-service-architecture/
http://www.martinfowler.com/bliki/FirstLaw.html

293.1 Size of a Microservice

a call on another system via the network is orders of magnitude slower than a direct
call within the same process. In addition to the pure latency time, serialization and
deserialization of parameters and results are time consuming. These processes not
only take a long time, but also cost CPU capacity.

Moreover, distributed calls might fail because the network is temporarily
 unavailable or the called server cannot be reached—for instance due to a crash. This
increases complexity when implementing distributed systems, because the caller has
to deal with these errors in a sensible manner.

Experience3 teaches us that microservice-based architectures work in spite of
these problems. When microservices are designed to be especially small, the amount
of distributed communication increases and the overall system gets slower. This is
an argument for larger microservices. When a microservice contains a UI and fully
implements a specific part of the domain, it can operate without calling on other
microservices in most cases, because all components of this part of the domain are
implemented within one microservice. The desire to limit distributed communica-
tion is another reason to build systems according to the domain.

Sustainable Architecture

Microservices also use distribution to design architecture in a sustainable manner
through distribution into individual microservices: it is much more difficult to use a
microservice than a class. The developer has to deal with the distribution technology
and has to use the microservice interface. In addition, he or she might have to make
preparations for tests to include the called microservice or replace it with a stub.
Finally, he has to contact the team responsible for the respective microservice.

To use a class within a deployment monolith is much simpler—even if the class
belongs to a completely different part of the monolith and falls within the responsi-
bility of another team. However, because it is so simple to implement a dependency
between two classes, unintended dependencies tend to accumulate within deploy-
ment monoliths. In the case of microservices dependencies are harder to implement,
which prevents the creation of unintended dependencies.

Refactoring

However, the boundaries between microservices also create challenges, for instance
during refactoring. If it becomes apparent that a piece of functionality does not fit
well within its present microservice, it has to be moved to another microservice. If
the target microservice is written in a different programming language, this transfer

3. http://martinfowler.com/articles/distributed-objects-microservices.html

http://www.martinfowler.com/articles/distributed-objects-microservices.html

Chapter 3 What Are Microservices?30

inevitably leads to a new implementation. Such problems do not arise when func-
tionalities are moved within a microservice. This consideration may argue for larger
microservices, and this topic is the focus of section 7.3.

Team Size

The independent deployment of microservices and the division of the development
effort into teams result in an upper limit for the size of an individual microservice.
A team should be able to implement features within a microservice and deploy those
features into production independently of other teams. By ensuring this, the archi-
tecture enables the scaling of development without requiring too much coordination
effort between the teams.

A team has to be able to implement features independently of the other teams.
Therefore, at first glance it seems like the microservice should be large enough to
enable the implementation of different features. When microservices are smaller,
a team can be responsible for several microservices, which together enable the
 implementation of a domain. A lower limit for the microservice size does not result
from the independent deployment and the division into teams.

However, an upper limit does result from it: when a microservice has reached a
size that prevents its further development by a single team, it is too large. For that
matter a team should have a size that is especially well suited for agile processes,
which is typically three to nine people. Thus a microservice should never grow so
large that a team of three to nine people cannot develop it further by themselves.
In addition to the sheer size, the number of features to be implemented in an indi-
vidual microservice plays an important role. Whenever a large number of changes is
necessary within a short time, a team can rapidly become overloaded. Section 12.2
highlights alternatives that enable several teams to work on the same microservice.
However, in general a microservice should never grow so large that several teams are
necessary to work on it.

Infrastructure

Another important factor influencing the size of a microservice is the infrastructure.
Each microservice has to be able to be deployed independently. It must have a con-
tinuous delivery pipeline and an infrastructure for running the microservice, which
has to be present not only in production but also during the different test stages. Also
databases and application servers might belong to infrastructure. Moreover, there
has to be a build system for the microservice. The code for the microservice has to be
versioned independently of that for other microservices. Thus a project within
 version control has to exist for the microservice.

313.1 Size of a Microservice

Depending on the effort that is necessary to provide the required infrastructure for
a microservice, the sensible size for a microservice can vary. When a small microser-
vice size is chosen, the system is distributed into many microservices, thus requiring
more infrastructure. In the case of larger microservices, the system overall contains
fewer microservices and consequently requires less infrastructure.

Build and deployment of microservices should anyhow be automated. Never-
theless, it can be laborious to provide all necessary infrastructure components for a
microservice. Once setting up the infrastructure for new microservices is automated,
the expenditure for providing infrastructures for additional microservices decreases.
This automation enables further reduction of the microservice size. Companies that
have been working with microservices for some time usually simplify the creation
of new microservices by providing the necessary infrastructure in an automated
manner.

Additionally, some technologies enable reduction of the infrastructure overhead to
such an extent that substantially smaller microservices are possible—however, with a
number of limitations in such cases. Such nanoservices are discussed in Chapter 14,
“Technologies for Microservices.”

Replaceability

A microservice should be as easy to replace as possible. Replacing a microservice can
be sensible when its technology becomes outdated or if the microservice code is of
such bad quality that it cannot be developed any further. The replaceability of
microservices is an advantage when compared to monolithic applications, which can
hardly be replaced at all. When a monolith cannot be reasonably maintained any-
more, its development has either to be continued in spite of the associated high costs
or a similarly cost-intensive migration has to take place. The smaller a microservice
is, the easier it is to replace it with a new implementation. Above a certain size a
microservice may be difficult to replace, for it then poses the same challenges as a
monolith. Replaceability thus limits the size of a microservice.

Transactions and Consistency

Transactions possess the so-called ACID characteristics:

 • Atomicity indicates that a given transaction is either executed completely or
not at all. In case of an error, all changes are reversed.

 • Consistency means that data is consistent before and after the execution of a
transaction—database constraints, for instance, are not violated.

Chapter 3 What Are Microservices?32

 • Isolation indicates that the operations of transactions are separated from
each other.

 • Durability indicates permanence: changes to the data are stored and are still
available after a crash or other interruption of service.

Within a microservice, changes to a transaction can take place. Moreover, the
consistency of data in a microservice can be guaranteed very easily. Beyond an indi-
vidual microservice, this gets difficult, and overall coordination is necessary. Upon
the rollback of a transaction all changes made by all microservices would have to be
reversed. This is laborious and hard to implement, for the delivery of the decision
that changes have to be reversed has to be guaranteed. However, communication
within networks is unreliable. Until it is decided whether a change may take place,
further changes to the data are barred. If additional changes have taken place, it
might no longer be possible to reverse a certain change. However, when microser-
vices are kept from introducing data changes for some time, system throughput is
reduced.

However, when communications occur via messaging systems, transactions are
possible (see section 8.4). With this approach, transactions are also possible without
a close link between the microservices.

Consistency

In addition to transactions, data consistency is important. An order, for instance,
also has to be recorded as revenue. Only then will revenue and order data be
 consistent. Data consistency can be achieved only through close coordination. Data
consistency can hardly be guaranteed across microservices. This does not mean that
the revenue for an order will not be recorded at all. However, it will likely not happen
exactly at the same point of time and maybe not even within one minute of order
processing because the communication occurs via the network—and is consequently
slow and unreliable.

Data changes within a transaction and data consistency are only possible when
all data being processed is part of the same microservice. Therefore, data changes
determine the lower size limit for a microservice: when transactions are supposed
to encompass several microservices and data consistency is required across several
microservices, the microservices have been designed too small.

Compensation Transactions across Microservices

At least in the case of transactions there is an alternative: if a data change has to be
rolled back in the end, compensation transactions can be used for that.

333.1 Size of a Microservice

A classic example for a distributed transaction is a travel booking, which consists
of a hotel, a rental car, and a flight. Either everything has to be booked together or
nothing at all. Within real systems and also within microservices, this functionality is
divided into three microservices because the three tasks are very different. Inquiries
are sent to the different systems whether the desired hotel room, rental car, and flight
are available. If all are available, everything is reserved. If, for instance, the hotel room
suddenly becomes unavailable, the reservations for the flight and the rental car have to
be cancelled. However, in the real world the concerned companies will likely demand
a fee for the booking cancellation. Due to that, the cancellation is not only a techni-
cal event happening in the background like a transaction rollback but also a business
process. This is much easier to represent with a compensation transaction. With this
approach, transactions across several elements in microservice environments can also
be implemented without the presence of a close technical link. A compensation trans-
action is just a normal service call. Technical as well as business reasons can lead to
the use of mechanisms such as compensation transactions for microservices.

Summary

In conclusion, the following factors influence the size of a microservice (see
Figure 3.1):

 • The team size sets an upper limit; a microservice should never be so large that
one very large team or several teams are required to work on it. Eventually, the
teams are supposed to work and bring software into production independently
of each other. This can only be achieved when each team works on a separate
deployment unit—that is, a separate microservice. However, one team can
work on several microservices.

 • Modularization further limits the size of a microservice: The microservice
should preferably be of a size that enables a developer to understand all its
aspects and further develop it. Even smaller is of course better. This limit
is below the team size: whatever one developer can still understand, a team
should still be able to develop further.

 • Replaceability reduces with the size of the microservice. Therefore, replacea-
bility can influence the upper size limit for a microservice. This limit lies below
the one set by modularization: when somebody decides to replace a microser-
vice, this person has first of all to be able to understand the microservice.

 • A lower limit is set by infrastructure: if it is too laborious to provide the neces-
sary infrastructure for a microservice, the number of microservices should be
kept rather small; consequently the size of each microservice will be larger.

Chapter 3 What Are Microservices?34

 • Similarly, distributed communication overhead increases with the number of
microservices. For this reason, the size of microservices should not be set too small.

 • Consistency of data and transactions can only be ensured within a micro-
service. Therefore, microservices should not be so small that consistency and
transactions must be ensured across several microservices.

These factors not only influence the size of microservices but also reflect a certain
idea of microservices. According to this idea, the main advantages of microservices
are independent deployment and the independent work of the different teams, along
with the replaceability of microservices. The optimal size of a microservice can be
deduced from these desired features.

However, there are also other reasons for microservices. When microservices are,
for instance, introduced because of their independent scaling, a microservice size
has to be chosen that ensures that each microservice is a unit, which has to scale
independently.

How small or large a microservice can be, cannot be deduced solely from these
 criteria. This also depends on the technology being used. Especially the effort
 necessary for providing infrastructure for a microservice and the distributed commu-
nication depends on the utilized technology. Chapter 14 looks at technologies, which
make the development of very small services possible—denoted as nanoservices.
These nanoservices have different advantages and disadvantages to microservices,
which, for instance, are implemented using technologies presented in Chapter 13,
“Example of a Microservice-based Architecture.”

Ideal Size
of a

Microservice

Distributed
Communication

Team Size

Infrastructure

Modularization

Replaceability

Transactions and
Consistency

Figure 3.1 Factors Influencing the Size of a Microservice

353.2 Conway’s Law

Thus, there is no ideal size. The actual microservice size will depend on the tech-
nology and the use case of an individual microservice.

Try and Experiment

How great is the effort required for the deployment of a microservice in your
language, platform, and infrastructure?

 • Is it just a simple process? Or is it a complex infrastructure containing
application servers or other infrastructure elements?

 • How can the effort for the deployment be reduced so that smaller microser-
vices become possible?

Based on this information you can define a lower limit for the size of a
microservice. Upper limits depend on team size and modularization, so you
should also think of appropriate limits in those terms.

3.2 Conway’s Law

Conway’s Law4 was coined by the American computer scientist Melvin Edward
 Conway and indicates the following:

Any organization that designs a system (defined broadly) will produce a design whose
structure is a copy of the organization’s communication structure.

It is important to know that this law is meant to apply not only to software
but to any kind of design. The communication structures that Conway mentions,
do not have to be identical to the organization chart. Often there are informal
 communication structures, which also have to be considered in this context. In
addition, the geographical distribution of teams can influence communication.
After all it is much simpler to talk to a colleague who works in the same room or at
least in the same office than with one working in a different city or even in a differ-
ent time zone.

4. http://www.melconway.com/research/committees.html

http://www.melconway.com/research/committees.html

Chapter 3 What Are Microservices?36

Reasons for the Law

Conway’s Law derives from the fact that each organizational unit designs a specific
part of the architecture. If two architectural parts have an interface, coordination in
regards to this interface is required—and, consequently, a communication relation-
ship between the organizational units that are responsible for the respective parts of
the architecture.

From Conway’s Law it can also be deduced that design modularization is
 sensible. Via such a design, it is possible to ensure that not every team member has
to constantly coordinate with every other team member. Instead the developers
 working on the same module can closely coordinate their efforts, while team mem-
bers working on different modules only have to coordinate when they develop an
interface—and even then only in regards to the specific design of the external fea-
tures of this interface.

However, the communication relationships extend beyond that. It is much easier
to collaborate with a team within the same building than with a team located in
another city, another country, or even within a different time zone. Therefore, archi-
tectural parts having numerous communication relationships are better implemented
by teams that are geographically close to each other, because it is easier for them
to communicate with each other. In the end, the Conway’s Law focuses not on the
organization chart but on the real communication relationships.

By the way, Conway postulated that a large organization has numerous commu-
nication relationships. Thus communication becomes more difficult or even impos-
sible in the end. As a consequence, the architecture can be increasingly affected and
finally break down. In the end, having too many communication relationships is a
real risk for a project.

The Law as Limitation

Normally Conway’s Law is viewed as a limitation, especially from the perspective of
software development. Let us assume that a project is modularized according to
technical aspects (see Figure 3.2). All developers with a UI focus are grouped into one
team, the developers with backend focus are put into a second team, and data bank
experts make up the third team. This distribution has the advantage that all three
teams consist of experts for the respective technology. This makes it easy and trans-
parent to create this type of organization. Moreover, this distribution also appears
logical. Team members can easily support each other, and technical exchange is also
facilitated.

373.2 Conway’s Law

Database Team

UI Team

Backend Team

Database

UI

Backend

Figure 3.2 Technical Project Distribution

According to Conway’s Law, it follows from such a distribution that the three
teams will implement three technical layers: a UI, a backend, and a database. The
chosen distribution corresponds to the organization, which is in fact sensibly built.
However, this distribution has a decisive disadvantage: a typical feature requires
changes to UI, backend, and database. The UI has to render the new features for
the clients, the backend has to implement the logic, and the database has to create
structures for the storage of the respective data. This results in the following
disadvantages:

 • The person wishing to have a feature implemented has to talk to all three
teams.

 • The teams have to coordinate their work and create new interfaces.

 • The work of the different teams has to be coordinated in a manner that ensures
that their efforts temporally fit together. The backend, for instance, cannot
really work without getting input from the database, and the UI cannot work
without input from the backend.

 • When the teams work in sprints, these dependencies cause time delays: The
database team generates in its first sprint the necessary changes, within the
second sprint the backend team implements the logic, and in the third sprint
the UI is dealt with. Therefore, it takes three sprints to implement a single
feature.

Chapter 3 What Are Microservices?38

In the end this approach creates a large number of dependencies as well as a high
communication and coordination overhead. Thus this type of organization does
not make much sense if the main goal is to implement new features as rapidly as
possible.

Many teams following this approach do not realize its impact on architecture
and do not consider this aspect further. This type of organization focuses instead
on the notion that developers with similar skills should be grouped together within
the organization. This organization becomes an obstacle to a design driven by the
domain like microservices, whose development is not compatible with the division
of teams into technical layers.

The Law as Enabler

However, Conway’s Law can also be used to support approaches like microservices.
If the goal is to develop individual components as independently of each other as
possible, the system can be distributed into domain components. Based on these
domain components, teams can be created. Figure 3.3 illustrates this principle: There
are individual teams for product search, clients, and the order process. These teams
work on their respective components, which can be technically divided into UI, back-
end, and database. By the way, the domain components are not explicitly named in
the figure, for they are identical to the team names. Components and teams are syn-
onymous. This approach corresponds to the idea of so-called cross-functional teams,
as proposed by methods such as Scrum. These teams should encompass different
roles so that they can cover a large range of tasks. Only a team designed along such
principles can be in charge of a component—from engineering requirements via
implementation through to operation.

The division into technical artifacts and the interface between the artifacts can
then be settled within the teams. In the easiest case, developers only have to talk
to developers sitting next to them to do so. Between teams, coordination is more
complex. However, inter-team coordination is not required very often, since features
are ideally implemented by independent teams. Moreover, this approach creates thin
interfaces between the components. This avoids laborious coordination across teams
to define the interface.

Ultimately, the key message to be taken from Conway’s Law is that architecture
and organization are just two sides of the same coin. When this insight is cleverly
put to use, the system will have a clear and useful architecture for the project. Archi-
tecture and organization have the common goal to ensure that teams can work in an
unobstructed manner and with as little coordination overhead as possible.

The clean separation of functionality into components also facilitates mainte-
nance. Since an individual team is responsible for individual functionality and com-
ponent, this distribution will have long-term stability, and consequently the system
will remain maintainable.

393.2 Conway’s Law

Database

UI

Backend

Database

UI

Backend

Database

UI

Backend

Team Product Search Team Customer Team Order Process

Figure 3.3 Project by Domains

The teams need requirements to work upon. This means that the teams need to
contact people who define the requirements. This affects the organization beyond
the projects, for the requirements come from the departments of the enterprise, and
these also according to Conway’s Law have to correspond to the team structures
within the project and the domain architecture. Conway’s Law can be expanded
beyond software development to the communication structures of the entire organi-
zation, including the users. To put it the other way round: the team structure within
the project and consequently the architecture of a microservice system can follow
from the organization of the departments of the enterprise.

The Law and Microservices

The previous discussion highlighted the relationship between architecture and organi-
zation of a project only in a general manner. It would be perfectly conceivable to align
the architecture along functionalities and devise teams, each of which are in charge for a
separate functionality without using microservices. In this case the project would
develop a deployment monolith within which all functionalities are implemented. How-
ever, microservices support this approach. Section 3.1 already discussed that microser-
vices offer technical independence. In conjunction with the division by domains, the
teams become even more independent of each other and have even less need to coordi-
nate their work. The technical coordination as well as the coordination concerning the
domains can be reduced to the absolute minimum. This makes it far easier to work in
parallel on numerous features and also to bring the features in production.

Chapter 3 What Are Microservices?40

Microservices as a technical architecture are especially well suited to support the
approach to devise a Conway’s Law–based distribution of functionalities. In fact,
exactly this aspect is an essential characteristic of a microservices-based architecture.

However, orienting the architecture according to the communication structures
entails that a change to the one also requires a change of the other. This makes archi-
tectural changes between microservices more difficult and makes the overall process
less flexible. Whenever a piece of functionality is moved from one microservice to
another, this might have the consequence that another team has to take care of this
functionality from that point on. This type of organizational change renders soft-
ware changes more complex.

As a next step this chapter will address how the distribution by domain can best
be implemented. Domain-driven design (DDD) is helpful for that.

Try and Experiment

Have a look at a project you know:

 • What does the team structure look like?

 • Is it technically motivated, or is it divided by domain?

 • Would the structure have to be changed to implement a microservices-
based approach?

 • How would it have to be changed?

 • Is there a sensible way to distribute the architecture onto different teams?
Eventually each team should be in charge of independent domain compo-
nents and be able to implement features relating to them.

 • Which architectural changes would be necessary?

 • How laborious would the changes be?

3.3 Domain-Driven Design and Bounded Context

In his book of the same title, Eric Evans formulated domain-driven design (DDD)5 as
pattern language. It is a collection of connected design patterns and supposed to
support software development especially in complex domains. In the following text,
the names of design patterns from Evan’s book are written in italics.

5. Eric Evans. 2003. Domain-Driven Design: Tackling Complexity in the Heart of Software. Boston:
Addison-Wesley.

413.3 Domain-Driven Design and Bounded Context

Domain-driven design is important for understanding microservices, for it supports
the structuring of larger systems according to domains. Exactly such a model is neces-
sary for the division of a system into microservices. Each microservice is meant to con-
stitute a domain, which is designed in such a way that only one microservice has to be
changed in order to implement changes or to introduce new features. Only then is the
maximal benefit to be derived from independent development in different teams, as sev-
eral features can be implemented in parallel without the need for extended coordination.

Ubiquitous Language

DDD defines a basis for how a model for a domain can be designed. An essential
foundation of DDD is Ubiquitous Language. This expression denotes that the soft-
ware should use exactly the same terms as the domain experts. This applies on all
levels: in regards to code and variable names as well as for database schemas. This
practice ensures that the software really encompasses and implements the critical
domain elements. Let us assume for instance that there are express orders in an
e-commerce system. One possibility would be to generate a Boolean value with the
name “fast” in the order table. This creates the following problem: domain experts
have to translate the term “express order,” which they use on a daily basis, into
“order with a specific Boolean value.” They might not even know what Boolean
 values are. This renders any discussion of the model more difficult, for terms have to
be constantly explained and related to each other. The better approach is to call the
table within the database scheme “express order.” In that case it is completely trans-
parent how the domain terms are implemented in the system.

Building Blocks

To design a domain model, DDD identifies basic patterns:

 • Entity is an object with an individual identity. In an e-commerce application,
the customer or the items could be examples for Entities. Entities are typically
stored in databases. However, this is only the technical implementation of the
concept Entity. An Entity belongs in essence to the domain modeling like the
other DDD concepts.

 • Value Objects do not have their own identity. An address can be an example
of a Value Object, for it makes only sense in the context of a specific customer
and therefore does not have an independent identity.

 • Aggregates are composite domain objects. They facilitate the handling of invari-
ants and other conditions. An order, for instance, can be an Aggregate of order
lines. This can be used to ensure that an order from a new customer does not
exceed a certain value. This is a condition that has to be fulfilled by calculating val-
ues from the order lines so that the order as Aggregate can control these conditions.

Chapter 3 What Are Microservices?42

 • Services contain business logic. DDD focuses on modeling business logic as
Entities, Value Objects, and Aggregates. However, logic accessing several such
objects cannot be sensibly modeled using these objects. For these cases there
are Services. The order process could be such a Service, for it needs access to
items and customers and requires the Entity order.

 • Repositories serve to access all Entities of a type. Typically, there is a persis-
tency technology like a database behind a Repository.

 • Factories are mostly useful to generate complex domain objects. This is espe-
cially the case when these contain for instance many associations.

Aggregates are of special importance in the context of microservices: within an
Aggregate consistency can be enforced. Because consistency is necessary, parallel
changes have to be coordinated in an Aggregate. Otherwise two parallel changes
might endanger consistency. For instance, when two order positions are included in
parallel into an order, consistency can be endangered. The order has already a value
of €900 and is maximally allowed to reach €1000. If two order positions of €60 each
are added in parallel, both might calculate a still acceptable total value of €960 based
on the initial value of €900. Therefore, changes have to be serialized so that the final
result of €1020 can be controlled. Accordingly, changes to Aggregates have to be seri-
alized. For this reason, an Aggregate cannot be distributed across two microservices.
In such a scenario consistency cannot be ensured. Consequently, Aggregates cannot
be divided between microservices.

Bounded Context

Building blocks such as Aggregate represent for many people the core of DDD. DDD
describes, along with strategic design, how different domain models interact and
how more complex systems can be built up this way. This aspect of DDD is probably
even more important than the building blocks. In any case it is the concept of DDD,
which influences microservices.

The central element of strategic designs is the Bounded Context. The underly-
ing reasoning is that each domain model is only sensible in certain limits within a
system. In e-commerce, for instance, number, size, and weight of the ordered items
are of interest in regards to delivery, for they influence delivery routes and costs. For
accounting on the other hand prices and tax rates are relevant. A complex system
consists of several Bounded Contexts. In this it resembles the way complex biological
organisms are built out of individual cells, which are likewise separate entities with
their own inner life.

433.3 Domain-Driven Design and Bounded Context

Bounded Context: An Example

The customer from the e-commerce system shall serve as an example for a
Bounded Context (see Figure 3.4). The different Bounded Contexts are Order,
Delivery, and Billing. The component Order is responsible for the order pro-
cess. The component Delivery implements the delivery process. The compo-
nent Billing generates the bills.

Delivery

Customer
Delivery
address

Preferred
delivery
service

Billing

Customer

Billing
address
Tax rate

Order

Customer

Bonus program #

Figure 3.4 Project by Domains

Each of these Bounded Contexts requires certain customer data:

 • Upon ordering the customer is supposed to be rewarded with points in a
bonus program. In this Bounded Context the number of the customer has
to be known to the bonus program.

 • For Delivery the delivery address and the preferred delivery service of the
customer are relevant.

 • Finally, for generating the bill the billing address and the tax rate of the
customer have to be known.

In this manner each Bounded Context has its own model of the customer.
This renders it possible to independently change microservices. If for instance
more information regarding the customer is necessary for generating bills,
only changes to the Bounded Context billing are necessary.

It might be sensible to store basic information concerning the customer in
a separate Bounded Context. Such fundamental data is probably sensible in
many Bounded Contexts. To this purpose the Bounded Contexts can cooper-
ate (see below).

(continued)

Chapter 3 What Are Microservices?44

To illustrate the system setup in the different Bounded Contexts a Context Map
can be used (see section 7.2). Each of the Bounded Contexts then can be imple-
mented within one or several microservices.

Collaboration between Bounded Contexts

How are the individual Bounded Contexts connected? There are different
possibilities:

 • In case of a Shared Kernel the domain models share some common elements;
however, in other areas they differ.

 • Customer/Supplier means that a subsystem offers a domain model for the
caller. The caller in this case is the client who determines the exact setup of the
model.

 • This is very different in the case of Conformist: The caller uses the same
model as the subsystem, and the other model is thereby forced upon him. This
approach is relatively easy, for there is no need for translation. One example
is a standard software for a certain domain. The developers of this software
likely know a lot about the domain since they have seen many different use
cases. The caller can use this model to profit from the knowledge from the
modeling.

 • The Anticorruption Layer translates a domain model into another one so that
both are completely decoupled. This enables the integration of legacy systems
without having to take over the domain models. Often data modeling is not
very meaningful in legacy systems.

A universal model of the customer, however, is hardly sensible. It would be
very complex since it would have to contain all information regarding the cus-
tomer. Moreover, each change to customer information, which is necessary in
a certain context, would concern the universal model. This would render such
changes very complicated and would probably result in permanent changes
to the model.

453.3 Domain-Driven Design and Bounded Context

 • Separate Ways means that the two systems are not integrated, but stay
 independent of each other.

 • In the case of Open Host Service, the Bounded Context offers special services
everybody can use. In this way everybody can assemble their own integration.
This is especially useful when an integration with numerous other systems is
necessary and when the implementation of these integrations is too laborious.

 • Published Language achieves similar things. It offers a certain domain mod-
eling as a common language between the Bounded Contexts. Since it is widely
used, this language can hardly be changed anymore afterwards.

Bounded Context and Microservices

Each microservice is meant to model one domain so that new features or changes
have only to be implemented within one microservice. Such a model can be designed
based on Bounded Context.

One team can work on one or several Bounded Contexts, which each serve as
a foundation for one or several microservices. Changes and new features are sup-
posed to concern typically only one Bounded Context—and thus only one team.
This ensures that teams can work largely independently of each other. A Bounded
Context can be divided into multiple microservices if that seems sensible. There
can be technical reasons for that. For example, a certain part of a Bounded Context
might have to be scaled up to a larger extent than the others. This is simpler if this
part is separated into its own microservice. However, designing microservices that
contain multiple Bounded Contexts should be avoided, for this entails that several
new features might have to be implemented in one microservice. This interferes with
the goal to develop features independently.

Nevertheless, it is possible that a special requirement comprises many Bounded
Contexts—in that case additional coordination and communication will be required.

The coordination between teams can be regulated via different collaboration
possibilities. These influence the independence of the teams as well: Separate Ways,
Anticorruption Layer or Open Host Service offer a lot of independence. Conformist
or Customer/Supplier on the other hand tie the domain models very closely together.
For Customer/Supplier the teams have to coordinate their efforts closely: the supplier
needs to understand the requirements of the customer. For Conformist, however, the
teams do not need to coordinate: one team defines the model that the other team just
uses unchanged (see Figure 3.5).

Chapter 3 What Are Microservices?46

Coordination
Effort

Anticorruption
Layer

Shared Kernel

Conformist

Customer /
Supplier

Separate Ways

Open Host
Service

Published
Language

Shared Bounded
Context

Figure 3.5 Communication Effort of Different Collaborations

As in the case of Conway’s Law from section 3.2, it becomes very apparent that
organization and architecture are very closely linked. When the architecture enables
a distribution of the domains in which the implementation of new features only
requires changes to a defined part of the architecture, these parts can be distributed
to different teams in such a way that these teams can work largely independently
of each other. DDD and especially Bounded Context demonstrate what such a
 distribution can look like and how the parts can work together and how they have to
coordinate.

Large-Scale Structure

With large-scale structure, DDD also addresses the question how the system in its
entirety can be viewed from the different Bounded Contexts with respect to
microservices.

 • A System Metaphor can serve to define the fundamental structure of the entire
system. For example, an e-commerce system can orient itself according to
the shopping process: the customer starts out looking for products, then he/
she will compare items, select one item, and order it. This can give rise to three
microservices: search, comparison, and order.

 • A Responsibility Layer divides the system into layers with different respon-
sibilities. Layers can call other layers only if those are located below them.
This does not refer to a technical division into database, UI and logic. In an

473.4 Why You Should Avoid a Canonical Data Model (Stefan Tilkov)

 e-commerce system, domain layers might be (for example) the catalog, the
order process, and billing. The catalog can call on the order process, and
the order process can call on the generation of the bill. However, calls into
the other direction are not permitted.

 • Evolving Order suggests it is best not to determine the overall structure too
rigidly. Instead, the order should arise from the individual components in a
stepwise manner.

These approaches can provide an idea how the architecture of a system, which
consists of different microservices, can be organized (see also Chapter 7, “Architec-
ture of Microservice-based Systems”).

Try and Experiment

Look at a project you know:

 • Which Bounded Contexts can you identify?

 • Generate an overview of the Bounded Contexts in a Context Map. Com-
pare section 7.2.

 • How do the Bounded Contexts cooperate? (Anticorruption Layer Customer/
Supplier etc.). Add this information to the Context Map.

 • Would other mechanisms have been better at certain places? Why?

 • How could the Bounded Contexts be sensibly distributed to teams so that
features are implemented by independent teams?

These questions might be hard to answer because you need to get a new per-
spective on the system and how the domains are modeled in the system.

3.4 Why You Should Avoid a Canonical Data
Model (Stefan Tilkov)

by Stefan Tilkov, innoQ

In recent times, I’ve been involved in a few architecture projects on the enterprise
level again. If you’ve never been in that world, that is, if you’ve been focusing on

Chapter 3 What Are Microservices?48

individual systems so far, let me give you the gist of what this kind of environment is
like. There are lots of meetings, more meetings, and even more meetings; there’s an
abundance of slide decks, packed with text and diagrams—none of that Presenta-
tion Zen nonsense, please. There are conceptual architecture frameworks, showing
different perspectives; there are guidelines and reference architectures, enterprise-
wide layering approaches, a little bit of SOA and EAI and ESB and portals and
(lately) API talk thrown in for good measure. Vendors and system integrators and (of
course) consultants all see their chance to exert influence on strategic decisions, mak-
ing their products or themselves an integral part of the company’s future strategy. It
can be a very frustrating but (at least sometimes) also very rewarding experience:
those wheels are very big and really hard to turn, but if you manage to turn them, the
effect is significant.

It’s also amazing to see how many of the things that cause problems when
building large systems are repeated on the enterprise level. (We don’t often make
mistakes … but if we do, we make them big!) My favorite one is the idea of estab-
lishing a canonical data model (CDM) for all of your interfaces.

If you haven’t heard of this idea before, a quick summary is: Whatever kind of
technology you’re using (an ESB, a BPM platform, or just some assembly of ser-
vices of some kind), you standardize the data models of the business objects you
exchange. In its extreme (and very common) form, you end up with having just
one kind of Person, Customer, Order, Product, etc., with a set of IDs, attributes,
and associations everyone can agree on. It isn’t hard to understand why that might
seem a very compelling thing to attempt. After all, even a nontechnical manager will
understand that the conversion from one data model to another whenever systems
need to talk to each other is a complete waste of time. It’s obviously a good idea
to standardize. Then, anyone who happens to have a model that differs from the
canonical one will have to implement a conversion to and from it just once, new
systems can just use the CDM directly, and everyone will be able to communicate
without further ado!

In fact, it’s a horrible, horrible idea. Don’t do it.
In his book on domain-driven design, Eric Evans gave a name to a concept that is

obvious to anyone who has actually successfully built a larger system: the Bounded
Context. This is a structuring mechanism that avoids having a single huge model
for all of your application, simply because that (a) becomes unmanageable and
(b) makes no sense to begin with. It recognizes that a Person or a Contract are differ-
ent things in different contexts on a conceptual level. This is not an implementation
problem—it’s reality.

If this is true for a large system—and trust me, it is—it’s infinitely more true for
an enterprise-wide architecture. Of course you can argue that with a CDM, you’re

493.4 Why You Should Avoid a Canonical Data Model (Stefan Tilkov)

only standardizing the interface layer, but that doesn’t change a thing. You’re still try-
ing to make everyone agree what a concept means, and my point is that you should
recognize that not every single system has the same needs.

But isn’t this all just pure theory? Who cares about this, anyway? The amazing
thing is that organizations are excellent in generating a huge amount of work based
on bad assumptions. The CDM (in the form I’ve described it here) requires coordi-
nation between all the parties that use a particular object in their interfaces (unless
you trust that people will be able to just design the right thing from scratch on their
own, which you should never do). You’ll have meetings with some enterprise archi-
tect and a few representatives for specific systems, trying to agree what a customer
is. You’ll end up with something that has tons of optional attributes because all the
participants insisted theirs need to be there, and with lots of things that are kind of
weird because they reflect some system’s internal restrictions. Despite the fact that
it’ll take you ages to agree on it, you’ll end up with a zombie interface model will be
universally hated by everyone who has to work with it.

So is a CDM a universally bad idea? Yes, unless you approach it differently. In
many cases, I doubt a CDM’s value in the first place and think you are better off with
a different and less intrusive kind of specification. But if you want a CDM, here are a
number of things you can do to address the problems you’ll run into:

 • Allow independent parts to be specified independently. If only one system is
responsible for a particular part of your data model, leave it to the people to
specify what it looks like canonically. Don’t make them participate in meet-
ings. If you’re unsure whether the data model they create has a significant over-
lap with another group’s, it probably hasn’t.

 • Standardize on formats and possibly fragments of data models. Don’t try to
come up with a consistent model of the world. Instead, create small buildings
blocks. What I’m thinking of are e.g. small XML or JSON fragments, akin to
microformats, that standardize small groups of attributes (I wouldn’t call them
business objects).

 • Most importantly, don’t push your model from a central team downwards or
outwards to the individual teams. Instead, it should be the teams who decide
to “pull” them into their own context when they believe they provide value. It’s
not you who’s doing the really important stuff (even though that’s a common
delusion that’s attached to the mighty Enterprise Architect title). Collect the
data models the individual teams provide in a central location, if you must,
and make them easy to browse and search. (Think of providing a big elastic
search index as opposed to a central UML model.)

Chapter 3 What Are Microservices?50

What you actually need to do as an enterprise architect is to get out of people’s
way. In many cases, a crucial ingredient to achieve this is to create as little centrali-
zation as possible. It shouldn’t be your goal to make everyone do the same thing. It
should be your goal to establish a minimal set of rules that enable people to work
as independently as possible. A CDM of the kind I’ve described above is the exact
opposite.

3.5 Microservices with a UI?

This book recommends that you equip microservices with a UI. The UI should offer
the functionality of the microservice to the user. In this way, all changes in regards to
one area of functionality can be implemented in one microservice—regardless of
whether they concern the UI, the logic, or the database. However, microservice
experts so far have different opinions in regards to the question of whether the inte-
gration of UI into microservices is really required. Ultimately, microservices should
not be too large. And when logic is supposed to be used by multiple frontends, a
microservice consisting of pure logic without a UI might be sensible. In addition, it is
possible to implement the logic and the UI in two different microservices but to have
them implemented by one team. This enables implementation of features without
coordination across teams.

Focusing on microservices with a UI puts the main emphasis on the distribution
of the domain logic instead of a distribution by technical aspects. Many architects
are not familiar with the domain architecture, which is especially important for
 microservices-based architectures. Therefore, a design where the microservices contain
the UI is helpful as a first approach in order to focus the architecture on the domains.

Technical Alternatives

Technically the UI can be implemented as Web UI. When the microservices have a
RESTful-HTTP interface, the Web-UI and the RESTful-HTTP interface are very
similar—both use HTTP as a protocol. The RESTful-HTTP interface delivers JSON
or XML, the Web UI HTML. If the UI is a Single-Page Application, the JavaScript
code is likewise delivered via HTTP and communicates with the logic via RESTful
HTTP. In case of mobile clients, the technical implementation is more complicated.
Section 8.1 explains this in detail. Technically a deployable artifact can deliver via an
HTTP interface, JSON/XML, and HTML. In this way it implements the UI and
allows other microservices to access the logic.

513.5 Microservices with a UI?

Self-Contained System

Instead of calling this approach “Microservice with UI” you can also call it “Self-
Contained System” (SCS).6 SCS define microservices as having about 100 lines of
code, of which there might be more than one hundred in a complete project.

An SCS consists of many of those microservices and contains a UI. It should com-
municate with other SCSs asynchronously, if at all. Ideally each functionality should
be implemented in just one SCS, and there should be no need for SCSs to communi-
cate with each other. An alternative approach might be to integrate the SCSs at the
UI-level.

In an entire system, there are then only five to 25 of these SCS. An SCS is some-
thing one team can easily deal with. Internally the SCS can be divided into multiple
microservices.

The following definitions result from this reasoning:

 • SCS is something a team works on and which represents a unit in the domain
architecture. This can be an order process or a registration. It implements a
sensible functionality, and the team can supplement the SCS with new features.
An alternative name for a SCS is a vertical. The SCS distributes the architec-
ture by domain. This is a vertical design in contrast to a horizontal design. A
horizontal design would divide the system into layers, which are technically
motivated—for instance UI, logic, or persistence.

 • A microservice is a part of a SCS. It is a technical unit and can be indepen-
dently deployed. This conforms with the microservice definition put forward
in this book. However, the size given in the SCS world corresponds to what this
book denotes as nanoservices (see Chapter 14).

 • This book refers to nanoservices as units that are still individually deploya-
ble but make technical trade-offs in some areas to further reduce the size of
the deployment units. For that reason, nanoservices do not share all technical
characteristics of microservices.

SCS inspired the definition of microservices as put forward in this book. Still
there is no reason not to separate the UI into a different artifact in case the microser-
vice gets otherwise too large. Of course, it is more important that the microservice is
small and thus maintainable than to integrate the UI. But the UI and logic should at
least be implemented by the same team.

6. http://scs-architecture.org

http://www.scs-architecture.org

Chapter 3 What Are Microservices?52

3.6 Conclusion

Microservices are a modularization approach. For a deeper understanding of micro-
services, the different perspectives discussed in this chapter are very helpful:

 • Section 3.1 focuses on the size of microservices. But a closer look reveals that
the size of microservices itself is not that important, even though size is an
influencing factor. However, this perspective provides a first impression of
what a microservice should be. Team size, modularization, and replace-
ability of microservices each determine an upper size limit. The lower limit
is determined by transactions, consistency, infrastructure, and distributed
communication.

 • Conway’s Law (section 3.2) shows that the architecture and organization of a
project are closely linked—in fact, they are nearly synonymous. Microservices
can further improve the independence of teams and thus ideally support archi-
tectural designs that aim at the independent development of functionalities.
Each team is responsible for a microservice and therefore for a certain part of
a domain, so that the teams are largely independent concerning the implemen-
tation of new functionalities. Thus, in regards to domain logic there is hardly
any need for coordination across teams. The requirement for technical coor-
dination can likewise be reduced to a minimum because of the possibility for
technical independence.

 • In section 3.3 domain-driven design provides a very good impression as to
what the distribution of domains in a project can look like and how the indi-
vidual parts can be coordinated. Each microservice can represent a Bounded
Context. This is a self-contained piece of domain logic with an independent
domain model. Between the Bounded Contexts there are different possibilities
for collaboration.

 • Finally, section 3.5 demonstrates that microservices should contain a UI to be
able to implement the changes for functionality within an individual microser-
vice. This does not necessarily have to be a deployment unit; however, the UI
and microservice should be in the responsibility of one team.

Together these different perspectives provide a balanced picture of what consti-
tutes microservices and how they can function.

533.6 Conclusion

Essential Points

To put it differently: A successful project requires three components:

 • an organization (This is supported by Conway’s Law.)

 • a technical approach (This can be microservices.)

 • a domain design as offered by DDD and Bounded Context

The domain design is especially important for the long-term maintainability of
the system.

Try and Experiment

Look at the three approaches for defining microservices: size, Conway's Law,
and domain-driven design.

 • Section 1.2 showed the most important advantages of microservices. Which
of the goals to be achieved by microservices are best supported by the
three definitions? DDD and Conway's Law lead, for instance, to a better
time-to-market.

 • Which of the three aspects is, in your opinion, the most important? Why?

This page intentionally left blank

375

Index

Symbols
0MQ (ZeroMQ), 183

A
acceptance tests, 59
acceptance-driven design (ATDD), 216
ACID, 31–33
ActiveMQ, 183
adjusting architecture

causes of bad architecture, 110–111
challenges with, 117–118
changes in microservices, 111
changes to overall architecture, 111–112
code reuse versus redundancy, 114–115
code transfer, 113–114
overview, 110
rewriting, 117
shared libraries, 112–113
shared services, 115–116
spawning new services, 116–117

Advanced Message Queuing Protocol
(AMQP), 182

advantages of microservices. See microservice
advantages

aggregates, 41–42
agile architecture, 75–76
AJAX (Asynchronous JavaScript and XML), 170
Amazon

AWS (Amazon Web Services), 338
Cloud

CloudWatch, 340, 349
JVM-based microservices in, 338–340

DynamoDB, 338
Elastic Beanstalk, 349
ElastiCache, 338
Kinesis, 338
Lambda, 347–349
modernization scenario example, 18–19

AMQP (Advanced Message Queuing
Protocol), 182

AngularJS, 165

annotations (Hystrix), 330
@Autowired, 334
@EnableCircuitBreaker, 330
@EnableDiscoveryClient, 324–325
@EnableEurekaClient, 324–325, 332
@EnableEurekaServer, 326
@EnableHystrix, 330
@EnableHystrixDashboard, 331, 332
@EnableTurbine, 332
@EnableZuulProxy, 328
@HystrixCommand, 330
@RequestMapping, 307–308
@RestController, 307–308
@RibbonClient, 334
@SpringBootApplication, 307–308

Ansible, 255
anticorruption layer, 44, 109
Apache

Kafka, 183, 338
Mesos, 265
Qpid, 182
Thrift, 180
Zookeeper, 139, 310

API keys, 157
application.properties file, 313
applications

e-commerce legacy application
migration status, 15–16
team creation, 16

e-commerce legacy application scenario
Amazon example, 18–19
approach, 14
challenges, 14–15
feature development, 17–18
general description, 11–12
influence on organization, 18
microservice advantages, 12–13, 17

microservices-based application example
build, 311–313
communication, 327–329
deployment with Docker, 313–314
Docker Compose, 321–324
Docker Machine, 320–321

Index376

applications (continued)
domain architecture, 304–306
integration of other technologies, 335–336
JVM-based microservices in Amazon

Cloud, 338–340
load balancing, 333–334
overview, 303–304
resilience with Hystrix, 329–333
service discovery, 324–326
Spring Framework, 306–311
summary, 341–342
testing, 336–337
Vagrant, 314–320

application-test.properties file, 229, 233
arbitrary test frameworks, 232
architecture

agile architecture, 75–76
architecture management

Context Maps, 108–109
cycle-free software, 104–105
importance of, 107–108
tools for, 104–107

effect on departments, 291–292
of individual microservices

CQRS (Command Query Responsibility
Segregation), 195–197

domain architecture, 193–194
event sourcing, 197–199
hexagonal architecture, 199–202
microservice implementation and,

296–297
resilience, 203–208
stability, 203–208
summary, 211–212
technical architecture, 208–211

macro/micro architecture
creating, 278–279
definition of, 277
domain architecture, 282
extent of, 279
operations and, 281
operations challenges, 239–240
responsibility for, 277–278
technologies, 280–281
testing, 282–284

of microservice-based systems
architecture management, 104–110
configuration, 139–141
documentation, 159–161
domain architecture, 100–104
EDA (event-driven architecture), 134–135

legacy application integration, 126–134
load balancing, 144–148
overview, 99
planning for growth, 118–125
scalability, 148–151
security, 151–159
service discovery, 141–143
summary, 161–162
technical architecture, 136–138
techniques to adjust architecture, 110–118

refactoring, 75
requirements and, 74–75
sample microservices-based application

build, 311–313
communication, 327–329
deployment with Docker, 313–314
Docker Compose, 321–324
Docker Machine, 320–321
domain architecture, 304–306
integration of other technologies,

335–336
JVM-based microservices in Amazon

Cloud, 338–340
load balancing, 333–334
overview, 303–304
resilience with Hystrix, 329–333
service discovery, 324–326
Spring Framework, 306–311
summary, 341–342
testing, 336–337
Vagrant, 314–320

SOA (service-oriented architecture)
characteristics of, 81–82
communication, 83–84
compared to microservices, 87–92
coordination, 86
interfaces, 85–86
introducing, 84
landscape, 82–83
orchestration, 86
services in, 84–85
technologies, 86–87
versioning, 85

sustainable architecture, 29
three-tier architecture, 71

artifacts, 238–239
asset servers, 166–167
Asynchronous JavaScript and XML

(AJAX), 170
ATDD (acceptance test-driven design), 216
ATOM Feeds, 183

Index 377

atomicity, 31
authentication, 329
authorization

OAuth2, 152–156
Spring Cloud Security, 329

automation (deployment), 254–255
AutoScaling, 339
@Autowired, 334
availability, 159
avoiding

CDMs (canonical data models), 47–50
erosion of microservices, 122–123

AWS (Amazon Web Services), 338
Azure Service Bus, 183

B
back-end interfaces, 174–175
bad architecture, causes of, 110–111
balancing load. See load balancing
batch data replication, 186
BDD (behavior-driven design), 216
BEAM (Bogdan/ Björn’s Erlang Abstract

Machine), 360
behavior specification, 239
behavior-driven design (BDD), 216
benefits of microservices. See microservice

advantages
Berkeley Internet Name Domain Server (BIND),

142–143
big systems, starting with, 119–120
BigPipe, 170–171
BIND (Berkeley Internet Name Domain Server),

142–143
blue/green deployment, 220, 257
blueprints (OSGi), 352
BMC Remedy, 251
Bogdan/ Björn’s Erlang Abstract Machine

(BEAM), 360
bottlenecks during testing, 13
Bounded Contexts

CDMs (canonical data models), 47–50
collaboration between, 44–45
Context Maps, 108–109
example, 42–44
large-scale structure, 46–47
microservices and, 45–46
nanoservices and, 347
overview, 52
sample microservices-based application,

305–306

breaking up code, 126–127
building sample microservices-based application,

311–313
bulkhead, 204–205
bundles, 350–353
business advantages of microservices, 65–67

C
CA Opscenter, 251
cache (REST), 176
calling

Lambda functions, 348
Seneca functions, 363–365

callMicroservice() function, 334
canary releasing, 220, 257
canonical data models (CDMs), avoiding,

47–50
capacity tests, 59
CatalogConsumerDrivenContractTest

class, 337
CDCs (consumer-driven contracts), 231
CDMs (canonical data models), avoiding, 47–50
central load balancers, 145
certificates, 157
challenges of microservices

architecture, 74–76
Conway’s Law, 273–274
infrastructure, 76–77
operations

artifacts, 238–239
micro and macro architecture, 239–240
templates, 240

overview, 8
summary, 78
technical challenges

code dependencies, 71–72
overview, 69–71
technology pluralism, 73–74
unreliable communication, 73

changes of perspective, DevOps and, 288–289
changing architecture. See adjusting architecture
Chef, 255
circuit breaker design

Hystrix, 329
resilience and stability, 203–204

classes
CatalogConsumerDrivenContractTest, 337
CustomerConsumerDrivenContractTest, 337
OrderTestApp, 336
SpringRestDataConfig, 304–305

Index378

clients
client libraries, 292–293
client-based load balancing, 147–148
client-level integration, 190–191
Eureka, 324–325
mobile clients, 172–173
rich clients, 172–173

cloud
Amazon Cloud

CloudWatch, 340, 349
JVM-based microservices in, 338–340

Spring Cloud, 308–310
Spring Cloud Netflix, 310–311

Cloud Foundry, Spring Cloud for, 310
CloudWatch, 340, 349
cluster environments, 324
CMS (content management systems), 130
Coda Hale Metrics, 340
code dependencies, 71–72
code ownership, collective, 273–276
code reuse, 114–115, 292–295
code transfer, 113–114
cohesion, 194
collaboration between Bounded Contexts, 44–45
collectd, 252–253
collective code ownership, 273–276
combined deployment, 258–259
Command Query Responsibility Segregation. See

CQRS (Command Query Responsibility
Segregation)

commands. See also functions
docker kill, 319
docker log, 318
docker ps, 319
docker rm, 319
docker run, 334
docker-compose, 323, 334
docker-machine, 320–321
mvn package, 311
vagrant destroy, 319
vagrant halt, 319
vagrant provision, 319
vagrant ssh, 318
vagrant up, 319

commit phase, 59
Common Object Request Broker Architecture

(CORBA), 70
communication

data replication
batch, 186
consistency, 185–186
event, 186–187

implementation, 186
overview, 184–185
redundancy, 185–186

distributed communication, 28–29
between Docker containers, 263
between Erlang processes, 360–361
external interfaces, 187–190
internal interfaces, 187–190
levels of, 163
messaging

advantages of, 180–181
technologies, 182–184
transactions and, 181–182

REST (representational state transfer)
definition of, 175–179
load balancing, 144–145
RESTful-HTTP interfaces, 50
Spring Data REST, 307

sample microservices-based application, 305,
327–329

in SOA (service-oriented architecture),
83–84, 87

SOAP (Simple Object Access Protocol),
179–180

UIs (user interfaces)
HTML-based user interfaces, 168–175
SPAs (single-page apps), 164–168

unreliable communication, 73
compromises, nanoservices and, 345
confidentiality, 158
configuration

Eureka, 325
Hystrix, 333
microservice-based systems, 139–141
operations, 256
Spring Cloud Config, 139, 309–310
Vagrant, 315–317

conformist collaboration, 44
consistency

data replication, 185–186
definition of, 31
problems with, 139–140
size of microservices and, 31–32

Consul, 143
consumer contracts, 231
consumer-driven contract tests

contract types, 230–231
implementation, 231–232
overview, 230
sample microservices-based application, 337
tools, 232–233

containers (Docker), 262–263, 318–319

Index 379

content enricher, 128–129
content filters, 128
content management systems (CMS), 130
content-based routers, 127
Context Maps, 108–109
contexts, bounded. See Bounded Contexts
continuous delivery

advantages of, 7–8
challenges, 76–77
legacy application modernization, 12
operations

challenges of, 238–240
control, 259–260
deployment, 254–259
infrastructure, 260–266
logging, 241–246
monitoring, 246–253
summary, 266–267

pipeline, 59–60, 67
testing, 220

continuous deployment, 257
contract tests

contract types, 230–231
implementation, 231–232
overview, 230

control of operations, 259–260
Conway, Melvin Edward, 35
Conway’s Law

challenges associated with, 273–274
definition of, 35, 52, 273
as enabler, 38–39
as limitation, 36–38
microservices and, 39–40
reasons for, 36

coordination
of deployments, 85–86
microservice-based systems, 139–141
pull requests for, 276
SOA (service-oriented architecture), 86

CORBA (Common Object Request Broker
Architecture), 70

CoreOS, 265, 324
correlating data with events, 249
correlation IDs, 245
CORS (cross-origin resource sharing),

166–167
CQRS (Command Query Responsibility

Segregation)
advantages of, 196–197
challenges, 197
microservices and, 196
overview, 195–196

CRM (customer relationship management),
82–83, 88–90

cross-functional teams, 285–290
cross-origin resource sharing (CORS), 166–167
customer interface, 290–292
customer relationship management (CRM),

82–83, 88–90
CustomerConsumerDrivenContractTest class,

337
customer/supplier collaboration, 44
cycle-free software, 104–105
cyclic dependencies, 103–104

D
dashboard (Hystrix), 331
data replication

batch, 186
consistency, 185–186
event, 186–187
implementation, 186
overview, 129–130, 184–185, 191–192
redundancy, 185–186

data security, 158–159
data storage for sample microservices-based

application, 304–305
databases

Amazon DynamoDB, 338
HSQL database, 307, 319–320
legacy application integration, 133–134

Datensparsamkeit, 157
DDD (domain-driven design)

Bounded Contexts
CDMs (canonical data models), 47–50
collaboration between, 44–45
Context Maps, 108–109
example, 42–44
large-scale structure, 46–47
microservices and, 45–46
nanoservices and, 347
overview, 52
sample microservices-based application,

305–306
building blocks, 41–42
CDMs (canonical data models), avoiding,

47–50
large-scale structure, 46–47
overview, 40–41, 194
strategic design, 100–101
summary, 52
ubiquitous language, 41

declarative services (OSGi), 352

Index380

delegation to teams, 238–239
delivery. See continuous delivery
departments

architecture leading to, 291–292
microservice implementation and, 296

dependencies
code dependencies, 71–72
dependency management

cyclic dependencies, 103–104
overview, 101–102
unintended domain-based dependencies,

102–103
hidden dependencies, 133–134

deployment
automation, 254–255
combined versus separate, 258–259
coordination of, 85–86
deployment monoliths

migrating to microservices, 370–371
overview, 4
problems with, 121
technical coordination, 271

deployment strategies, 256–258
installation and configuration, 256
risk mitigation, 220–222, 256
sample microservices-based application,

313–314
separate deployment, 270–271

deployment monoliths
migrating to microservices, 370–371
overview, 4
problems with, 121
technical coordination, 271

desktop applications, nanoservices and, 346
Developer Anarchy, 284
development

signaling systems
challenges, 21–22
general description, 19–20
microservice advantages, 20–21, 22
suitability of microservices for, 22–23

sustainable development, 6, 57
test-driven development, 214–215

DevOps, 285–290
directories

docker-vagrant, 318
log-analysis, 341

distributed communication, 28–29
distributed systems

distributed communication, 28–29
distributed tracing, 245–246

distribution by domain. See DDD
(domain-driven design)

overview, 8, 20
DNS (Domain Name System), 142
Docker

cluster environments, 324
commands

docker kill, 319
docker log, 318
docker ps, 319
docker rm, 319
docker run, 334

containers, 262–263, 318–319
Docker Compose, 321–324
Docker Machine, 320–321
file system, 261–263
overview, 255
registry, 264
sample microservices-based application

deployment, 313–314
servers, 264–265

Docker Compose, 265, 321–324
docker kill command, 319
docker log command, 318
Docker Machine, 265, 320–321
docker ps command, 319
docker rm command, 319
docker run command, 334
Docker Swarm, 265
docker-compose command, 323, 334
Dockerfile, 313–314
docker-machine command, 320–321
docker-vagrant directory, 318
documentation

microservice-based system architecture,
159–161

Spring Guides, 311
testing as, 214–215

domain architecture
importance of, 8
of individual microservices, 193–194
macro/micro architecture, 282
of microservice-based systems

dependency management, 101–104
Otto GmbH example, 101
overview, 100
strategic design, 100–101

sample microservices-based application,
304–306

Domain Name System (DNS), 142
domain-driven design. See DDD (domain-driven

design)

Index 381

dpkg, 255
durability, 32
dynamic environments, monitoring in, 250
dynamic scaling, 148–150
DynamoDB, 338

E
EC2 (Elastic Computing Cloud), 349
Echo Verticles (Vert.x), 358–359
e-commerce legacy application scenario

Amazon example, 18–19
approach, 14
challenges, 14–15
feature development, 17–18
general description, 11–12
influence on organization, 18
microservice advantages, 12–13, 17
migration status, 15–16
team creation, 16

EDA (event-driven architecture), 134–135
Edge Side Includes (ESI), 171–172
EJB (Enterprise JavaBeans), 70
Elastic Beanstalk, 349
Elastic Computing Cloud (EC2), 349
Elastic Load Balancing (ELB), 146, 339
ElastiCache, 338
elasticity, 210
Elasticsearch, 242–244
ELB (Elastic Load Balancing), 146, 339
Elixir, 363
ELK (Elasticsearch, Logstash, Kibana) stack,

242–244
Ember.js, 165
@EnableCircuitBreaker, 330
@EnableDiscoveryClient, 324–325
@EnableEurekaClient, 324–325, 332
@EnableEurekaServer, 326
@EnableHystrix, 330
@EnableHystrixDashboard, 331, 332
enabler, Conway’s Law as, 38–39
@EnableTurbine, 332
@EnableZuulProxy, 328
enabling monitoring, 252
encapsulation, 194
engines, process, 208–209
Enterprise Integration Patterns, 127–129
Enterprise JavaBeans (EJB), 70
entities, 41
E-Post Development GmbH, 122
Erlang, 360–363
erosion of microservices, avoiding, 122–123

ESI (Edge Side Includes), 171–172
etcd, 139
Eureka

client, 324–325
configuration, 325
overview, 143, 311, 324
server, 326

evaluation of nanoservices, 366–367
Evans, Eric, 40
event-driven architecture (EDA), 134–135
events

correlating data with, 249
data replication, 186–187
EDA (event-driven architecture), 134–135
event sourcing, 197–199

evolving order, 47
example application. See sample microservices-

based application
expenditures, minimizing with testing, 214
exploratorive tests, 59
Ext JS, 165
Extensible Markup Language (XML), 177–178
external interfaces, 85, 187–190

F
Facebook BigPipe, 170–171
factories, 42
fail fast, 205
Fat JARs, 359
Feign, 311
file system (Docker), 261–263
files

application.properties, 313
application-test.properties, 229, 233
Dockerfile, 313–314
JAR (Java archive) files, 307, 354
log analysis, 341
MANIFEST.MF, 350–351
pom.xml, 311–312
Vagrantfile, 315–317
WAR (web application archive), 307, 354

filters
content filters, 128
message filters, 127
Zuul filters, 329

findAll() function, 330
firewalls, 157
First Rule of Distributed Object Design, 29
flexibility (SOA), 87–88
flexible transport (SOAP), 179–180
front-end servers, 171–172

Index382

functions. See also commands
callMicroservice(), 334
findAll(), 330
Lambda functions, 348
Seneca, 363–365

G
Gentsch, Lars, 122–123
George, Fred, 284
Gephi, 107
global architecture, 122
Grafana, 250
grants, authorization, 153–154
Graphite, 250
Graylog, 244
growth, planning for

big systems, 119–120
deployment monoliths, 121
erosion of microservices, avoiding, 122–123
global architecture, 122
new functionality, incorporating, 123–125
overview, 118–122
replaceability, 121
small systems, 120–121

H
HAL (Hypertext Application Language), 177
handshaking, 205
HAProxy, 146
Hashicorp Vault, 157–158
HATEOAS (Hypermedia as the Engine of

Application State), 177
Heusingfeld, Alexander, 287
hexagonal architecture

example, 201–202
versus layered architecture, 200
microservices and, 201
overview, 199–200

hidden dependencies, 132–133
high cohesion, 102
high technological complexity, 21–22
HornetQ, 183
hosts, open, 45
HP Operations Manager, 251
HSQL database, 307, 319–320
HTML (Hypertext Markup Language)

HTML-based user interfaces
back end, 174–175
front-end servers, 171–172

JavaScript, 170–171
mobile clients, 172–173
organizational levels, 173
ROCA (resource-oriented client

architecture), 168–169
routing, 169–170

overview, 178
HTTP (Hypertext Transfer Protocol)

httpd, 145
load balancing, 144–145
RESTful-HTTP interfaces, 50, 175–179

httpd, 145
hype versus reality, 371–372
Hypermedia as the Engine of Application State

(HATEOAS), 177
Hypertext Application Language (HAL), 177
Hypertext Markup Language. See HTML

(Hypertext Markup Language)
Hypertext Transfer Protocol. See HTTP

(Hypertext Transfer Protocol)
Hypoport AG, 258
Hystrix

annotations, 330
@Autowired, 334
@EnableCircuitBreaker, 330
@EnableDiscoveryClient, 324–325
@EnableEurekaClient, 324–325, 332
@EnableEurekaServer, 326
@EnableHystrix, 330
@EnableHystrixDashboard, 331, 332
@EnableTurbine, 332
@EnableZuulProxy, 328
@HystrixCommand, 330
@RequestMapping, 307–308
@RestController, 307–308
@RibbonClient, 334
@SpringBootApplication, 307–308

circuit breaker, 329
configuration, 333
dashboard, 331
overview, 311, 329
resilience and stability, 207–208
Turbine, 331–332

@HystrixCommand, 330

I
IBM Tivoli, 251
Icinga, 250
IDs, correlation IDs, 245
immutable servers, 140, 255

Index 383

implementation of microservices. See also
benefits of microservices; organizational
effects of microservices

approaches, 370–371
consumer-driven contract tests, 231–232
data replication, 186
external interfaces, 188–189
hype versus reality, 371–372
microservice implementation without

organizational changes, 295–297
sample microservices-based application

build, 311–313
communication, 327–329
deployment with Docker, 313–314
Docker Compose, 321–324
Docker Machine, 320–321
domain architecture, 304–306
integration of other technologies,

335–336
JVM-based microservices in Amazon

Cloud, 338–340
load balancing, 333–334
overview, 303–304
resilience with Hystrix, 329–333
service discovery, 324–326
Spring Framework, 306–311
summary, 341–342
testing, 336–337
Vagrant, 314–320

summary, 372
without organizational changes, 295–297

independence
independent scaling, 7, 61
technical independence, 63, 270–273

infrastructure
challenges, 76–77
influence on microservice size, 30–31
legacy applications and, 131
overview, 260–261
PaaS (platform as a service), 266
virtualization with Docker, 261–265

innoQ, 47, 287
installation

deployments, 256
Docker Machine, 321
scripts, 254
tools, 140–141
Vagrant, 318

installation scripts, 254
installation tools, 140–141
integration

data replication

batch, 186
consistency, 185–186
event, 186–187
implementation, 186
overview, 184–185
redundancy, 185–186

external interfaces, 187–190
integration platforms, 83
integration tests, 216, 226–227
internal interfaces, 187–190
legacy applications

breaking up code, 126–127
CMS (content management systems), 130
databases, 133–134
Enterprise Integration Patterns, 127–129
hidden dependencies, 132–133
infrastructure and, 131
limited integration, 129
overview, 57–58, 67, 126–127
UIs (user interfaces), 129–130

levels of, 163, 190–192
messaging

advantages of, 180–181
technologies, 182–184
transactions and, 181–182

of other systems, 21
REST (representational state transfer),

175–179
shared integration tests, 223–224
SOAP (Simple Object Access Protocol),

179–180
UIs (user interfaces)

HTML-based user interfaces, 168–175
SPAs (single-page apps), 164–168

integration tests, 216, 226–227
integrity, 158
interfaces

control via, 260
customer interface, 290–292
external interfaces, 187–190
internal interfaces, 187–190
Postel’s Law, 189–190
separating, 188
SOA (service-oriented architecture), 85–86
versioning, 192

internal interfaces, 187–190
introducing

microservices
approaches, 370–371
hype versus reality, 371–372
summary, 372

SOA (service-oriented architecture), 84

Index384

intrusion detection, 157
isolation, 32

J
JAR (Java archive) files, 307, 354
Java

bundles, 350–353
JAR (Java archive) files, 307, 354
Java EE

example, 356–357
microservices with, 355–356
nanoservices with, 355
overview, 354

JMS (Java Messaging Service), 183
JPA (Java Persistence API), 354
JRE (Java Runtime Environment), 307
JSF (Java ServerFaces), 354
JTA (Java Transaction API), 354
JVM-based microservices in Amazon

Cloud, 73–74
OSGi, 350–353
Spring Framework

HSQL database, 307, 319–320
Spring Boot, 307–308
Spring Cloud, 308–310
Spring Cloud Netflix, 310–311
Spring Data REST, 307

Java EE
example, 356–357
microservices with, 355–356
nanoservices with, 355
overview, 354

Java Messaging Service (JMS), 183
Java Persistence API (JPA), 354
Java Runtime Environment (JRE), 307
Java ServerFaces (JSF), 354
Java Transaction API (JTA), 354
Java Virtual Machine (JVM), 73–74
JavaScript

HTML-based user interfaces, 170–171
JSON (JavaScript Object Notation)

JWE (JSON Web Encryption), 154–155
JWT (JSON Web Token), 154–155
overview, 178

Seneca, 363–365
JavaScript Object Notation. See JSON

(JavaScript Object Notation)
JavaScript Object Notation (JSON), 178
Jetty, 338–339
JMS (Java Messaging Service), 183
JPA (Java Persistence API), 354
jQAssistant, 107

JRE (Java Runtime Environment), 307
JSF (Java ServerFaces), 354
JSON (JavaScript Object Notation)

JWE (JSON Web Encryption), 154–155
JWT (JSON Web Token), 154–155
overview, 178

JTA (Java Transaction API), 354
JUnit tests, 232
JVM (Java Virtual Machine), 73–74
JVM-based microservices in Amazon Cloud,

338–340
JWE (JSON Web Encryption), 154–155
JWT (JSON Web Token), 154–155

K
Kafka (Apache), 183, 338
Kerberos, 155
kernels, shared, 108
Kibana, 242–244
Kinesis, 338
Kubernetes, 265, 324

L
Lambda (Amazon), 347–349
landscape (SOA), 82–83
languages

Elixir, 363
Erlang, 360–363
HAL (Hypertext Application Language), 177
HTML (Hypertext Markup Language), 178
Java

bundles, 350–353
Java EE, 354–357
OSGi, 350–353

published language, 45
ubiquitious language, 41
XML (Extensible Markup Language),

177–178
large-scale structure, DDD (domain-driven

design) and, 46–47
latency, 69–70
layered architecture, 200
leadership, technical, 284
leaseRenewalIntervalInSeconds property

(Eureka), 325
legacy applications

development, 6
integration

breaking up code, 126–127
CMS (content management systems), 130
databases, 133–134

Index 385

Enterprise Integration Patterns, 127–129
hidden dependencies, 132–133
infrastructure and, 131
limited integration, 129
overview, 57–58, 67, 126–127
UIs (user interfaces), 129–130

modernization scenario
Amazon example, 18–19
approach, 14
challenges, 14–15
feature development, 17–18
general description, 11–12
influence on organization, 18
microservice advantages, 12–13, 17
migration status, 15–16
team creation, 16

levelized structure maps (LSMs), 104
levels

of independence, 271–273
of integration, 163, 190–192

libraries
client libraries, 292–293
Coda Hale Metrics, 340
shared libraries, 112–113

limitations, Conway’s Law as, 36–38
limited integration, 129
lines of code (LOC), 28, 343
Linux containers, 262–263
Linux servers, 264
load balancing

architecture and, 148
central load balancers, 145
client-based load balancing, 147–148
ELB (Elastic Load Balancing), 146, 339
load balancers (HTTP), 176
number of load balancers, 145
REST/HTTP, 144–145
sample microservices-based application,

333–334
service discovery, 146–147
technologies, 145–146

load tests, 217
LOC (lines of code), 28, 343
log analysis, 341
logging

correlation IDs, 245
ELK (Elasticsearch, Logstash, Kibana) stack,

242–244
Graylog, 244
log analysis, 341
for microservices, 241–242
Splunk, 244

stakeholders, 245
Zipkin, 245–246

logic layer integration, 191
Logstash, 242–244
loose coupling, 102
LSMs (levelized structure maps), 104

M
macro architecture

creating, 278–279
definition of, 277
domain architecture, 282
extent of, 279
operations and, 281
operations challenges, 239–240
responsibility for, 277–278
technologies, 280–281
testing, 282–284

MANIFEST.MF file, 350–351
manual tests, 217
maps

Context Maps, 108–109
LSMs (levelized structure maps), 104

Maven, 311–313
Mesos, 265, 324
Mesosphere, 324
message filters, 127
message routers, 127
message translators, 127
message-driven components, 210
messaging

advantages of, 180–181
message filters, 127
message routers, 127
message translators, 127
technologies, 182–184
transactions and, 181–182

metadata, 159–160
metrics, monitoring. See monitoring
Metrics framework, 252
micro architecture

creating, 278–279
definition of, 277
domain architecture, 282
operations challenges, 239–240, 281
responsibility for, 277–278
technologies, 280–281
testing, 282–284

microservice advantages
business advantages, 65–67
choice of technologies, 7

Index386

microservice advantages (continued)
continuous delivery, 7–8
independent scaling, 7
legacy application development, 6
modularization, 5
organizational benefits, 63–65
overview, 4–5, 270
replaceability, 5–6
sustainable development, 6
technical benefits

choice of technologies, 7, 62–63
continuous delivery, 7–8, 59–60
independence, 63, 270–273
independent scaling, 7
legacy integration, 6, 57–58
microservice replacement, 56–57
modularization, 5
overview, 55–56
replaceability, 5–6
robustness, 61–62
scaling, 7, 61
sustainable development, 6, 57
time to market, 6–7

time to market, 6–7
microservice challenges

architecture, 74–76
of Conway’s Law, 273–274
infrastructure, 76–77
operations

artifacts, 238–239
micro and macro architecture, 239–240
templates, 240

overview, 8
summary, 78
technical challenges

code dependencies, 71–72
overview, 69–71
technology pluralism, 73–74
unreliable communication, 73

microservice definition, 3–4
microservice-based systems

architecture management
Context Maps, 108–109
cycle-free software, 104–105
importance of, 107–108
tools for, 104–107

configuration, 139–141
documentation, 159–161
domain architecture

dependency management, 101–104
Otto GmbH example, 101

overview, 100
strategic design, 100–101

EDA (event-driven architecture), 134–135
legacy application integration

breaking up code, 126–127
CMS (content management systems), 130
databases, 133–134
Enterprise Integration Patterns, 127–129
hidden dependencies, 132–133
infrastructure and, 131
limited integration, 129
overview, 126–127
UIs (user interfaces), 129–130

load balancing
architecture and, 148
central load balancers, 145
client-based load balancing, 147–148
number of load balancers, 145
REST/HTTP, 144–145
service discovery, 146–147
technologies, 145–146

overview, 99
planning for growth

big systems, 119–120
deployment monoliths, 121
erosion of microservices, avoiding,

122–123
global architecture, 122
new functionality, incorporating,

123–125
overview, 118–119
replaceability, 121
small systems, 120–121

scalability
advantages of microservices, 150
dynamic scaling, 148–150
sharding, 150–151
throughput and response times, 151

security
availability, 159
confidentiality, 158
data security, 158–159
Datensparsamkeit, 157
firewalls, 157
Hashicorp Vault, 157–158
integrity, 158
intrusion detection, 157
JWT (JSON Web Token), 154–155
Kerberos, 155
OAuth2, 152–156
overview, 151–152

Index 387

service discovery, 141–143
summary, 161–162
technical architecture, 136–138
techniques to adjust architecture

causes of bad architecture, 110–111
challenges with, 117–118
changes in microservices, 111
changes to overall architecture, 111–112
code reuse versus redundancy, 114–115
code transfer, 113–114
overview, 110
rewriting, 117
shared libraries, 112–113
shared services, 115–116
spawning new services, 116–117

middleware, uncoupling via, 206
migration status, 15–16
minimizing expenditures with testing, 214
minimum size of microservices,

344–345
mitigating risk, 220–222, 256
mobile clients, 172–173
mocks, 215–216
Moco, 229
mod_include, 171
mod_proxy_balancer, 145
modernizing legacy applications

approach, 14
overview, 57–58
sample scenarios

challenges, 14–15
feature development, 17–18
general description, 11–12
influence on organization, 18
microservice advantages, 12–13, 17
migration status, 15–16
team creation, 16

modularization
influence on microservice size, 28
overview, 5
sample microservices-based application, 306
SPAs (single-page apps), 167–168
strong modularization, 67

Möllering, Sascha, 338–340
monitoring

additional metrics, 248
with Amazon CloudWatch, 340
basic information, 247
correlation with events, 249
dynamic environments, 250
enabling, 252
Erlang, 361

with Hystrix dashboard, 331
overview, 77, 246–247
stakeholders, 248–249
technologies for, 250–253
versus testing, 249

monoliths. See deployment monoliths
mountebank, 229
Müller, Jörg, 258–259
multiple services, splitting into, 116–117
multiple single-page apps. See SPAs (single-page

apps)
mvn package command, 311

N
Nagios, 250
nanoservices

advantages of, 344–346
Amazon Lambda, 347–349
definition of, 346–347
Erlang, 360–363
Java EE

microservices with, 355–356
nanoservices with, 355
overview, 354, 355

OSGi, 350–353
overview, 343
Seneca, 363–365
technical evaluation, 366–367
Vert.x, 357–359

Netflix, 310–311, 371
networking, Vagrant, 317
NewRelic, 251
nginx, 145, 171
ngx_http_ssi_module, 171
Node.js, 363–364
NUMMI car factory, 279

O
OAM (operations and maintenance support), 362
OAuth2, 152–156
open host services, 45
open source projects, 293–295
Open Telecom Platform (OTP) framework, 360
operations

challenges
artifacts, 238–239
micro and macro architecture, 239–240
overview, 76–77
templates, 240

control, 259–260

Index388

operations (continued)
deployment

automation, 254–255
combined versus separate, 258–259
deployment strategies, 256–258
installation and configuration, 256
risks associated with, 256

DevOps, 285–290
infrastructure

overview, 260–261
PaaS (platform as a service), 266
virtualization with Docker, 261–265

logging
correlation IDs, 245
ELK (Elasticsearch, Logstash, Kibana)

stack, 242–244
Graylog, 244
for microservices, 241–242
Splunk, 244
stakeholders, 245
Zipkin, 245–246

macro/micro architecture, 281
microservice implementation and, 296–297
monitoring

additional metrics, 248
basic information, 247
correlation with events, 249
dynamic environments, 250
enabling, 252
overview, 246–247
stakeholders, 248–249
technologies for, 250–253
versus testing, 249

summary, 266–267
operations and maintenance support (OAM), 362
Operations Manager, 251
Opscenter, 251
orchestration (SOA), 83, 86–87
order systems, 83
OrderTestApp class, 336
organizational effects of microservices

benefits of microservices, 63–65, 270–273
collective code ownership, 273–276
customer interface, 290–292
DevOps, 285–290
implementation without organizational

changes, 295–297
macro/micro architecture

creating, 278–279
definition of, 277
domain architecture, 282
extent of, 279

operations and, 281
responsibility for, 277–278
technologies, 280–281
testing, 282–284

overview, 18, 269
reusable code, 292–295
summary, 297–299
technical leadership, 284

organizational-level interfaces, 173
OSGi, 350–353
OTP (Open Telecom Platform) framework, 360
Otto GmbH, 101
outdated documentation, 160
ownership, collective code ownership, 273–276

P
PaaS (platform as a service), 266
package managers, 255
Packetbeat, 251
Pact, 233
pact-jvm, 233
Pacto, 233
parallel work, 12, 65–67
personification of servers, avoiding, 287–288
perspectives, DevOps and, 288–289
“pets vs. cattle” slogan (DevOps), 287–288
pipeline, continuous delivery, 59–60, 67
planning for growth

big systems, 119–120
deployment monoliths, 121
erosion of microservices, avoiding, 122–123
global architecture, 122
new functionality, incorporating, 123–125
overview, 118–119
replaceability, 121
small systems, 120–121

platform as a service (PaaS), 266
Play, 210
pluralism, 73–74
pom.xml files, 311–312
portals (SOA), 83
Postel’s Law, 189–190
Prana, 336
preferIpAddress property (Eureka), 325
process engines, 208–209
programs. See tools
projects

open source projects, 293–295
project size, 65

Protocol Buffer, 178
provider contracts, 230

Index 389

proxy-based load balancing, 144–145
published language, 45
pull requests for coordination, 276
Puppet, 255

Q-R
Qpid (Apache), 182
RabbitMQ, 182
Reactive Manifesto, 207, 209–210
reactive systems, 209–210
reasons for microservices. See benefits of

microservices
redundancy, 114–115, 185–186
refactoring, 8, 29–30, 75
reference environments, 228
registry (Docker), 264
Release It!, 62, 203
Remedy, 251
remote procedure call (RPC), 179
replaceability

advantages of, 56–57
influence on microservice size, 31
overview, 5–6, 67
system planning, 121

replicating data
batch, 186
consistency, 185–186
event, 186–187
implementation, 186
overview, 129–130, 184–185, 191–192
redundancy, 185–186

repositories, 42
representational state transfer. See REST

(representational state transfer)
@RequestMapping, 307–308
requests, pull, 276
resilience

bulkhead, 204–205
circuit breaker design, 203–204
fail fast, 205
handshaking, 205
Hystrix, 207–208
overview, 203, 209
Reactive Manifesto, 207
sample microservices-based application

annotations, 330
circuit breaker, 329
configuration, 333
dashboard, 331
overview, 329
Turbine, 331–332

steady state, 205
test harnesses, 206
timeouts, 203
uncoupling via middleware, 206

resource-oriented client architecture (ROCA),
168–169

response times, 151
responsibility layers, 46–47
responsiveness, 209
REST (representational state transfer)

definition of, 175–179
load balancing, 144–145
RESTful-HTTP interfaces, 50
Spring Data REST, 307

@RestController, 307–308
reuse of code, 114–115, 292–295
rewriting services, 117
Ribbon, 310, 333–334
@RibbonClient, 334
rich clients, 172–173
Riemann, 250
risk mitigation, 220–222, 256
robustness, 61–62
Robustness Principle, 189–190
ROCA (resource-oriented client architecture),

168–169
roll forward, 257
rollbacks, 256
routers, 127–129
routing

Enterprise Integration Patterns, 127–129
HTML-based user interfaces, 169–170
Zuul, 327–328

RPC (remote procedure call), 179
rpm, 255
RSpec, 232–233
RxJava, 210
RxJS, 210

S
Salt, 255
SAML, 155
sample microservices-based application

build, 311–313
communication, 327–329
deployment with Docker, 313–314
Docker Compose, 321–324
Docker Machine, 320–321
domain architecture, 304–306
integration of other technologies,

335–336

Index390

sample microservices-based application
(continued)

JVM-based microservices in Amazon Cloud,
338–340

load balancing, 333–334
overview, 303–304
resilience with Hystrix

annotations, 330
circuit breaker, 329
configuration, 333
dashboard, 331
overview, 329
Turbine, 331–332

service discovery, 324–326
Spring Framework

HSQL database, 307
Spring Boot, 307–308
Spring Cloud, 308–310
Spring Cloud Netflix, 310–311
Spring Data REST, 307, 319–320

summary, 341–342
testing

consumer-driven contract tests, 337
overview, 336
stubs, 336–337

Vagrant
configuration, 315–317
how it works, 314
installation, 318
networking, 317

Scala, 64, 210
scalability

advantages of microservices, 150
AutoScaling, 339
dynamic scaling, 148–150
ELK (Elasticsearch, Logstash, Kibana) stack,

243–244
independent scaling, 7, 61, 67
sharding, 150–151
throughput and response times, 151

scenarios
legacy application modernization

approach, 14
challenges, 14–15
feature development, 17–18
general description, 11–12
influence on organization, 18
microservice advantages, 12–13, 17
migration status, 15–16
team creation, 16, 18–19

signaling systems
challenges, 21–22
general description, 19–20

microservice advantages, 20–21, 22
suitability of microservices for, 22–23

scripts, installation, 254
SCS (self-contained system), 51
security

API keys, 157
availability, 159
certificates, 157
confidentiality, 158
data security, 158–159
Datensparsamkeit, 157
firewalls, 155
Hashicorp Vault, 157–158
integrity, 158
intrusion detection, 157
JWT (JSON Web Token), 154–155
Kerberos, 155
OAuth2, 152–156
overview, 151–152
SAML, 155
Spring Cloud Security, 309
SSL/TLS, 155

self-contained system (SCS), 51
Semantic Versioning, 189
Seneca, 363–365
seneca.act() function, 364
seneca.add() function, 364
seneca.listen() function, 364
separate deployment, 258–259
separate ways, 45
separating interfaces, 188
Server Side Includes (SSI), 171–172
servers

asset servers, 166–167
Docker and, 264–265
Eureka, 326
front-end servers, 171–172
immutable servers, 140, 255
“pets vs. cattle” slogan (DevOps), 287–288
Zuul, 327–329

Serverspec, 235
service discovery

BIND (Berkeley Internet Name Domain
Server), 142–143

Consul, 143
DNS (Domain Name System), 142
Eureka

client, 324–325
configuration, 325
overview, 143, 324
server, 326

load balancing, 146–147
overview, 141–142

Index 391

service-oriented architecture. See SOA
(service-oriented architecture)

Seyren, 250
sharding, 150–151
shared integration tests, 223–224
shared kernels, 44, 108
shared libraries, 112–113, 292–293
shared services, 115–116
signaling system development

challenges, 21–22
general description, 19–20
microservice advantages, 20–21, 22
suitability of microservices for, 22–23

Simple Notification Service (SNS), 348
Simple Object Access Protocol (SOAP), 179–180
Simple Queue Service (SQS), 348
single-page apps. See SPAs (single-page apps)
size of microservices

factors influencing
consistency, 31–32
distributed communication, 28–29
infrastructure, 30–31
LOC (lines of code), 28
modularization, 28
overview, 27–28, 33–35
refactoring, 29–30
replaceability, 31
sustainable architecture, 29
team size, 30
transactions, 31–33

overview, 344–345
project size, 65
summary, 52

small systems, starting with, 120–121
SNS (Simple Notification Service), 348
SOA (service-oriented architecture)

characteristics of, 81–82
communication, 83–84
compared to microservices

architecture, 88–90
communication, 87
flexibility, 87–88
orchestration, 87
synergies, 91
table of differences, 91

coordination, 86
interfaces, 85–86
introducing, 84
landscape, 82–83
orchestration, 86
services in, 84–85
technologies, 86–87
versioning, 85

SOAP (Simple Object Access Protocol), 179–180
software development

sustainable software development, 57, 67
test-driven development, 214–215

SPAs (single-page apps)
asset servers, 166–167
SPA modules, 167–168
SPA per microservice, 165–166
technologies, 164–165

spigo, 110
Splunk, 244
Spring Boot, 307–308
Spring Cloud, 308–310
Spring Cloud Bus, 310
Spring Cloud Cluster, 310
Spring Cloud Config, 139, 309–310
Spring Cloud Connectors, 310
Spring Cloud Consul, 310
Spring Cloud Data Flow, 310
Spring Cloud Data Tasks, 310
Spring Cloud for Cloud Foundry, 310
Spring Cloud Netflix, 310–311
Spring Cloud Security, 309
Spring Cloud Sleuth, 310
Spring Cloud Stream, 310
Spring Cloud Zookeeper, 310
Spring Data REST, 307
Spring Framework

HSQL database, 307, 319–320
Spring Boot, 307–308
Spring Cloud, 308–310
Spring Cloud Netflix, 310–311
Spring Data REST, 307

Spring Guides, 311
@SpringBootApplication, 307–308
SpringRestDataConfig class, 304–305
SQS (Simple Queue Service), 348
Squid, 171
SSI (Server Side Includes), 171–172
SSL/TLS, 155
stability

bulkhead, 204–205
circuit breaker design, 203–204
fail fast, 205
handshaking, 205
Hystrix, 207–208
microservices and, 206–207
overview, 203
Reactive Manifesto, 207
steady state, 205
test harnesses, 206
timeouts, 203
uncoupling via middleware, 206

Index392

stakeholders
for logs, 245
for monitoring, 248–249

statelessness, 209
StatsD, 252
status of migration, 15–16
steady state, 205
strategic design, 100–101
strategies (deployment), 256–258
strong modularization, 67
Structure 101, 107
stubby4j, 229
stubs, 216, 228–229, 336–337
sustainable architecture, 29
sustainable development, 6, 57, 67
synchronous RESTful HTTP, 179
synergies between SOA and microservices, 91
system architecture

architecture management
Context Maps, 108–109
cycle-free software, 104–105
importance of, 107–108
tools for, 104–107

configuration, 139–141
documentation, 159–161
domain architecture

dependency management, 101–104
Otto GmbH example, 101
overview, 100
strategic design, 100–101

EDA (event-driven architecture), 134–135
legacy application integration

breaking up code, 126–127
CMS (content management systems), 130
databases, 133–134
Enterprise Integration Patterns, 127–129
hidden dependencies, 132–133
infrastructure and, 131
limited integration, 129
overview, 126–127
UIs (user interfaces), 129–130

load balancing
architecture and, 148
central load balancers, 145
client-based load balancing, 147–148
number of load balancers, 145
REST/HTTP, 144–145
service discovery, 146–147
technologies, 145–146

overview, 99
planning for growth

big systems, 119–120
deployment monoliths, 121

erosion of microservices, avoiding,
122–123

global architecture, 122
new functionality, incorporating, 123–125
overview, 118–119
replaceability, 121
small systems, 120–121

scalability
advantages of microservices, 150
dynamic scaling, 148–150
sharding, 150–151
throughput and response times, 151

security
API keys, 157
availability, 159
certificates, 157
confidentiality, 158
data security, 158–159
Datensparsamkeit, 157
firewalls, 157
Hashicorp Vault, 157–158
integrity, 158
intrusion detection, 157
JWT (JSON Web Token), 154–155
Kerberos, 155
OAuth2, 152–156
overview, 151–152
SAML, 155
SSL/TLS, 156

service discovery, 141–143
summary, 161–162
technical architecture, 136–138
techniques to adjust architecture

causes of bad architecture, 110–111
challenges with, 117–118
changes in microservices, 111
changes to overall architecture, 111–112
code reuse versus redundancy, 114–115
code transfer, 113–114
overview, 110
rewriting, 117
shared libraries, 112–113
shared services, 115–116
spawning new services, 116–117

system metaphor, 46
system testing, 222–224

T
teams

creating, 16
delegating to, 238–239
DevOps, 285–290

Index 393

size of, 30
us versus them attitude, 288

technical architecture, 136–138
technical benefits

choice of technologies, 62–63
continuous delivery, 59–60
independence, 63, 270–273
legacy integration, 57–58
microservice replacement, 56–57
overview, 55–56
robustness, 61–62
scaling, 61
sustainable software development, 57

technical challenges
code dependencies, 71–72
overview, 69–71
technology pluralism, 73–74
unreliable communication, 73

technical evaluation of nanoservices, 366–367
technical leadership, 284
technical standards, testing, 233–235
technologies

choice of, 7, 62–63
high technological complexity, 21–22
load balancing, 145–146
messaging, 182–184
monitoring tools, 250–253
sample microservices-based application

HSQL database, 307
Spring Boot, 307–308
Spring Cloud, 308–310
Spring Cloud Netflix, 310–311
Spring Data REST, 307, 319–320

for service discovery, 142–143
SOA (service-oriented architecture), 86–87
technology stack per team, 21

technology pluralism, 73–74
templates, 240
test harnesses, 206
test pyramid

for individual services, 217–219
for systems, 222

test-driven development, 214–215
testing

arbitrary test frameworks, 232
benefits of, 213–215
bottlenecks during, 13
continuous delivery pipeline, 220
individual services, 227–229
legacy applications, 225–227
macro/micro architecture, 282–284
versus monitoring, 249
risk mitigation, 220–222

sample microservices-based application
consumer-driven contract tests, 337
overview, 336
stubs, 336–337

summary, 235–236
system testing, 222–224
technical standards, 233–235
test pyramid

for individual services, 217–219
for systems, 222

test types
acceptance tests, 59
capacity tests, 59
consumer-driven contract tests,

230–233, 337
exploratorive tests, 59
integration tests, 216, 226–227
JUnit tests, 232
load tests, 217
manual tests, 217
shared integration tests, 223–224
UI tests, 216–217
unit tests, 215–216

three-tier architecture, 71
Thrift, 180
throughput, 151
Tilkov, Stefan, 47–50
time to market, 6–7
timeouts, 203
Tivoli, 251
Tolerant Reader concept, 190
tools

0MQ, 183
ActiveMQ, 183
Ansible, 255
Apache Kafka, 183
Apache Mesos, 265
Apache Qpid, 182
Apache Thrift, 180
Apache Zookeeper, 139
architecture management, 104–107
ATOM Feeds, 183
Azure Service Bus, 183
BIND (Berkeley Internet Name Domain

Server), 142–143
Chef, 255
collectd, 252–253
Consul, 143
CoreOS, 265, 324
DNS (Domain Name System), 142
Docker

cluster environments, 324
containers, 262–263, 318–319

Index394

tools (continued)
file system, 261–263
overview, 255
registry, 264
sample microservices-based application

deployment, 313–314
servers, 264–265

Docker Compose, 265, 321–324
Docker Machine, 265, 320–321
Docker Swarm, 265
etcd, 139
Eureka

client, 324–325
configuration, 325
overview, 143, 311, 324
server, 326

Feign, 311
Gephi, 107
Grafana, 250
Graphite, 250
HAProxy, 146
Hashicorp Vault, 157–158
HornetQ, 183
httpd, 145
Hystrix

annotations, 330
circuit breaker, 329
configuration, 333
dashboard, 331
overview, 311, 329
resilience and stability, 207–208
Turbine, 331–332

Icinga, 250
jQAssistant, 107
Kerberos, 155
Kubernetes, 265, 324
Maven, 311–313
Mesos, 324
Mesosphere, 324
Metrics framework, 252
Moco, 229
mountebank, 229
Nagios, 250
nginx, 145
OAuth2, 152–156
Operations Manager, 251
Opscenter, 251
package managers, 255
Packetbeat, 251
Pact, 233
Pacto, 233

Puppet, 255
RabbitMQ, 182
Remedy, 251
Ribbon, 310, 333–334
Riemann, 250
RSpec, 232–233
Salt, 255
SAML, 155
Serverspec, 235
Seyren, 250
Spring Framework

HSQL database, 307, 319–320
Spring Boot, 307–308
Spring Cloud, 308–310
Spring Cloud Config, 139
Spring Cloud Netflix, 310–311
Spring Data REST, 307

Squid, 171
SSL/TLS, 155
StatsD, 252
Structure 101, 107
stubby4j, 229
Tivoli, 251
Turbine, 311
uniform tools, 239
Vagrant

configuration, 315–317
how it works, 314
installation, 318
networking, 317

Varnish, 171
VirtualBox, 318
WireMock, 229
Zuul, 310, 327–329

tracing, 245–246, 310
transactions

influence on microservice size, 31–33
messages and, 181–182

transferring code, 113–114
TSL, 155
Turbine, 331–332

U
ubiquitious language, 41
UIs (user interfaces)

integration
HTML-based user interfaces, 168–175
overview, 129–130
SPAs (single-page apps), 164–168

overview, 47–50, 129–130

Index 395

SCS (self-contained system), 51
technical alternatives, 50
UI tests, 216–217

uncoupling via middleware, 206
uniformity

uniform tools, 239
via asset servers, 166–167, 311

unintended domain-based dependencies,
102–103

unit tests, 215–216
UNIX, 3
unreliable communication, 73
updating Docker containers, 319
“us versus them” attitude, 288
user interfaces. See UIs (user interfaces)

V
Vagrant

configuration, 315–317
how it works, 314
installation, 318
networking, 317

vagrant destroy command, 319
vagrant halt command, 319
vagrant provision command, 319
vagrant ssh command, 318
vagrant up command, 319
Vagrantfile, 315–317
value objects, 41
Varnish, 171

v.cpus setting (Vagrantfile), 318
versioning

interfaces, 192
Semantic Versioning, 189
SOA (service-oriented architecture), 85
version control, 77

Verticles (Vert.x), 358–359
Vert.x, 210, 357–359
viewing Docker containers, 318–319
virtual machines, 260
VirtualBox, 318
virtualization (Docker), 261–265
v.memory setting (Vagrantfile), 318

W
WAR (web application archive), 258, 307, 354
web integration. See UIs (user interfaces)
Wehrens, Oliver, 133–134
WireMock, 229

X-Y-Z
XML (Extensible Markup Language), 177–178
zanox AG, 338
ZeroMQ, 183
Zipkin, 245–246
ZMQ, 183
Zookeeper (Apache), 139, 310
Zuul, 310, 327–329
zypper, 255

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	About the Author
	Part II: Microservices: What, Why, and Why Not?
	Chapter 3: What Are Microservices?
	3.1 Size of a Microservice
	Modularization
	Distributed Communication
	Sustainable Architecture
	Refactoring
	Team Size
	Infrastructure
	Replaceability
	Transactions and Consistency
	Consistency
	Compensation Transactions across Microservices
	Summary

	3.2 Conway’s Law
	Reasons for the Law
	The Law as Limitation
	The Law as Enabler
	The Law and Microservices

	3.3 Domain-Driven Design and Bounded Context
	Ubiquitous Language
	Building Blocks
	Bounded Context
	Collaboration between Bounded Contexts
	Bounded Context and Microservices
	Large-Scale Structure

	3.4 Why You Should Avoid a Canonical Data Model (Stefan Tilkov)
	3.5 Microservices with a UI?
	Technical Alternatives
	Self-Contained System

	3.6 Conclusion
	Essential Points

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X-Y-Z

