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Preface

Although “microservices” is a new term, the concepts that it represents have been 
around for long time. In 2006, Werner Vogels (CTO at Amazon) gave a talk at the 
JAOO conference presenting the Amazon Cloud and Amazon’s partner model. In 
his talk he mentioned the CAP theorem, today the basis for NoSQL. In addition, he 
spoke about small teams that develop and run services with their own databases. 
Today this structure is called DevOps, and the architecture is known as micro 
services.

Later I was asked to develop a strategy for a client that would enable them to inte-
grate modern technologies into their existing application. After a few attempts to 
integrate the new technologies directly into the legacy code, we finally built a new 
application with a completely different modern technology stack alongside the old 
one. The old and the new application were only coupled via HTML links and via a 
shared database. Except for the shared database, this is in essence a microservices 
approach. That happened in 2008.

In 2009, I worked with another client who had divided his complete infrastructure 
into REST services, each being developed by individual teams. This would also be 
called microservices today. Many other companies with a web-based business model 
had already implemented similar architectures at that time. Lately, I have also real-
ized how continuous delivery influences software architecture. This is another area 
where microservices offer a number of advantages.

This is the reason for writing this book—a number of people have been pursuing 
a microservices approach for a long time, among them some very experienced archi-
tects. Like every other approach to architecture, microservices cannot solve every 
problem. However, this concept represents an interesting alternative to existing 
approaches.

Overview of the Book

This book provides a detailed introduction to microservices. Architecture and organ-
ization are the main topics. However, technical implementation strategies are not 
neglected. A complete example of a microservice-based system demonstrates a con-
crete technical implementation. The discussion of technologies for nanoservices 
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illustrates that modularization does not stop with microservices. The book provides 
all the necessary information for readers to start using microservices.

For Whom Is the Book Meant?

The book addresses managers, architects, and developers who want to introduce 
microservices as an architectural approach.

Managers

Microservices work best when a business is organized to support a microservices-
based architecture. In the introduction, managers understand the basic ideas behind 
microservices. Afterwards they can focus on the organizational impact of using 
microservices.

Developers

Developers are provided with a comprehensive introduction to the technical aspects 
and can acquire the necessary skills to use microservices. A detailed example of a 
technical implementation of microservices, as well as numerous additional technolo-
gies, for example for nanoservices, helps to convey the basic concepts.

Architects

Architects get to know microservices from an architectural perspective and can at the 
same time deepen their understanding of the associated technical and organizational 
issues.

The book highlights possible areas for experimentation and additional informa-
tion sources. These will help the interested reader to test their new knowledge 
 practically and delve deeper into subjects that are of relevance to them.

Structure and Coverage

The book is organized into four parts. 

Part I: Motivation and Basics

The first part of the book explains the motivation for using microservices and the 
foundation of the microservices architecture. Chapter 1, “Preliminaries,” presents 
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the basic properties as well as the advantages and disadvantages of microservices. 
Chapter 2, “Microservice Scenarios,” presents two scenarios for the use of microser-
vices: an e-commerce application and a system for signal processing. This section 
provides some initial insights into microservices and points out contexts for 
applications.

Part II: Microservices—What, Why, and Why Not?

Part II not only explains microservices in detail but also deals with their advantages 
and disadvantages:

 • Chapter 3, “What Are Microservices,” investigates the definition of the term 
“microservices” from three perspectives: the size of a microservice, Conway’s 
Law (which states that organizations can only create specific software architec-
tures), and finally a technical perspective based on domain-driven Design and 
Bounded Context.

 • The reasons for using microservices are detailed in Chapter 4, “Reasons for 
Using Microservices.” Microservices have not only technical but also organi-
zational advantages, and there are good reasons for turning to microservices 
from a business perspective.

 • The unique challenges posed by microservices are discussed in Chapter 5, 
“Challenges.” Among these are technical challenges as well as problems related 
to architecture, infrastructure, and operation.

 • Chapter 6, “Microservices and SOA,” aims at defining the differences between 
microservices and SOA (service-oriented architecture). At first sight both concepts 
seem to be closely related. However, a closer look reveals plenty of differences.

Part III: Implementing Microservices

Part III deals with the application of microservices and demonstrates how the 
 advantages that were described in Part II can be obtained and how the associated 
challenges can be solved.

 • Chapter 7, “Architecture of Microservice-Based Systems,” describes the archi-
tecture of microservices-based systems. In addition to domain architecture, 
technical challenges are discussed.

 • Chapter 8, “Integration and Communication,” presents the different approaches 
to the integration of and the communication between microservices. This 
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includes not only communication via REST or messaging but also the integra-
tion of UIs and the replication of data.

 • Chapter 9, “Architecture of Individual Microservices,” shows possible 
 architectures for microservices such as CQRS, Event Sourcing, or hexagonal 
architecture. Finally, suitable technologies for typical challenges are addressed.

 • Testing is the main focus of Chapter 10, “Testing Microservices and 
 Microservice-Based Systems.” Tests have to be as independent as possible to 
enable the independent deployment of the different microservices. However, 
the tests need to not only check the individual microservices, but also the sys-
tem in its entirety.

 • Operation and Continuous Delivery are addressed in Chapter 11, “Operations 
and Continuous Delivery of Microservices.” Microservices generate a huge 
number of deployable artifacts and thus increase the demands on the infra-
structure. This is a substantial challenge when introducing microservices.

 • Chapter 12, “Organizational Effects of a Microservices-Based Architecture,” 
illustrates how microservices also influence the organization. After all, micro-
services are an architecture, which is supposed to influence and improve the 
organization.

Part IV: Technologies

The last part of the book shows in detail and at the code level how microservices can 
be implemented technically:

 • Chapter 13, “Example of a Microservices-Based Architecture,” contains an 
exhaustive example for a microservices architecture based on Java, Spring 
Boot, Docker, and Spring Cloud. This chapter aims at providing an applica-
tion, which can be easily run, that illustrates the concepts behind microser-
vices in practical terms and offers a starting point for the implementation of a 
microservices system and experiments.

 • Even smaller than microservices are nanoservices, which are presented in 
Chapter 14, “Technologies for Nanoservices.” Nanoservices require specific 
technologies and a number of compromises. The chapter discusses different 
technologies and their related advantages and disadvantages.

 • Chapter 15, “Getting Started with Microservices,” demonstrates how micro-
services can be adopted.
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Essays

The book contains essays that were written by experts of various aspects of micro-
services. The experts were asked to record their main findings about microservices 
on approximately two pages. Sometimes these essays complement book chapters, 
sometimes they focus on other topics, and sometimes they contradict passages in the 
book. This illustrates that there is, in general, no single correct answer when it comes 
to software architectures, but rather a collection of different opinions and possibili-
ties. The essays offer the unique opportunity to get to know different viewpoints in 
order to subsequently develop an opinion.

Paths through the Book

The book offers content suitable for each type of audience. Of course, everybody 
can and should read the chapters that are primarily meant for people with a different 
type of job. However, the chapters focused on topics that are most relevant for a cer-
tain audience are indicated in Table P.1.

Table P.1  Paths through the Book

Chapter Developer Architect Manager

1 - Preliminaries X X X
2 - Microservice Scenarios X X X
3 - What Are Microservices? X X X
4 -  Reasons for Using Microservices X X X
5 - Challenges X X X
6 - Microservices and SOA  X X
7 -  Architecture of Microservice-Based 

Systems
X

8 -  Integration and Communication X X
9 -  Architecture of Individual 

Microservices
X X

10 -  Testing Microservices and 
Microservice-Based Systems

X X

11 -  Operations and Continuous 
Delivery of Microservices 

X X

(Continued)
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Chapter Developer Architect Manager

12 -  Organizational Effects of a 
Microservices-Based Architecture

X

13 -  Example of a Microservice-Based 
Architecture

X

14 - Technologies for Nanoservices X X
15 -  Getting Started with Microservices X X X

Readers who only want to obtain an overview are advised to concentrate on the 
summary section at the end of each chapter. People who want to gain practical 
knowledge should commence with Chapters 13 and 14, which deal with concrete 
technologies and code.

The instructions for experiments, which are given in the sections “Try and Experi-
ment,” help deepen your understanding by providing practical exercises. Whenever a 
chapter is of particular interest to you, you are encouraged to complete the related 
exercises to get a better grasp of the topics presented in that chapter.

Supplementary Materials

Errata, links to examples, and additional information can be found at http://
 micro services-book.com/. The example code is available at https://github.com/
ewolff/microservice/.

Register your copy of Microservices at informit.com for convenient access to 
downloads, updates, and corrections as they become available. To start the registra-
tion process, go to informit.com/register and log in or create an account. Enter the 
product ISBN 9780134602417 and click Submit. Once the process is complete, you 
will find any available bonus content under “Registered Products.”

Table P.1 Continued

https://www.github.com/ewolff/microservice/
https://www.github.com/ewolff/microservice/
http://www.microservices-book.com/
http://www.microservices-book.com/
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 PART II

Microservices: What, Why, 
and Why Not?

Part II discusses the different facets of microservice-based architectures to present 
the diverse possibilities offered by microservices. Advantages as well as disadvan-
tages are addressed so that the reader can evaluate what can be gained by using 
microservices and which points require special attention and care during the imple-
mentation of microservice-based architectures.

Chapter 3, “What Are Microservices,” explains the term “microservice” in 
detail. The term is dissected from different perspectives, which is essential for an 
in-depth understanding of the microservice approach. Important issues are the size 
of a microservice, Conway’s Law as organizational influence, and domain-driven 
design particularly with respect to Bounded Context from a domain perspective. 
Furthermore, the chapter addresses the question of whether a microservice should 
contain a UI. 

Chapter 4, “Reasons for Using Microservices,”  focuses on the advantages of 
microservices, taking alternatingly technical, organizational, and business perspectives. 

Chapter 5, “Challenges,” deals with the associated challenges in the areas of 
technology, architecture, infrastructure, and operation. 

Chapter 6, “Microservices and SOA,” distinguishes microservices from service-
oriented architecture (SOA). By making this distinction microservices are viewed 
from a new perspective, which helps to further clarify the microservices approach. 
Besides, microservices have been  frequently compared to SOAs.
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Section 1.1 provided an initial definition of the term microservice. However, there 
are a number of different ways to define microservices. The different definitions 
are based on different aspects of microservices. They also show for which reasons 
the use of microservices is advantageous. At the end of the chapter the reader 
should have his or her own definition of the term microservice—depending on the 
individual project scenario.

The chapter discusses the term microservice from different perspectives:

 • Section 3.1 focuses on the size of microservices.

 • Section 3.2 explains the relationship between microservices, architecture, and 
organization by using the Conway’s Law.

 • Section 3.3 presents a domain architecture of microservices based on domain-
driven design (DDD) and bounded context.

 • Section 3.5 explains why microservices should contain a user interface (UI).

3.1 Size of a Microservice

The name “microservices” conveys the fact that the size of the service matters; 
 obviously, microservices are supposed to be small.

Chapter 3

What Are Microservices?
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One way to define the size of a microservice is to count the lines of code (LOC).1 
However, such an approach has a number of problems:

 • It depends on the programming language used. Some languages require more 
code than others to express the same functionality—and microservices are 
explicitly not supposed to predetermine the technology stack. Therefore, 
defining microservices based on this metric is not very useful.

 • Finally, microservices represent an architecture approach. Architectures, 
 however, should follow the conditions in the domain rather than adhering to 
technical metrics such as LOC. Also for this reason attempts to determine size 
based on code lines should be viewed critically.

In spite of the voiced criticism, LOC can be an indicator for a microservice. 
Still, the question as to the ideal size of a microservice remains. How many LOC 
may a microservice have? Even if there are no absolute standard values, there are 
 nevertheless influencing factors, which may argue for larger or smaller microservices.

Modularization

One factor is modularization. Teams develop software in modules to be better able 
to deal with its complexity; instead of having to understand the entire software 
 package, developers only need to understand the module(s) they are working on as 
well as the interplay between the different modules. This is the only way for a team to 
work productively in spite of the enormous complexity of a typical software system. 
In daily life there are often problems as modules get larger than originally planned. 
This makes them hard to understand and hard to maintain, because changes require 
an understanding of the entire module. Thus it is very sensible to keep microservices 
as small as possible. On the other hand, microservices, unlike many other approaches 
to modularization, have an overhead.

Distributed Communication

Microservices run within independent processes. Therefore, communication 
between microservices is distributed communication via the network. For this type 
of system, the “First Rule of Distributed Object Design”2 applies. This rule states 
that systems should not be distributed if it can be avoided. The reason for this is that 

1. http://yobriefca.se/blog/2013/04/28/micro-service-architecture/
2. http://martinfowler.com/bliki/FirstLaw.html

http://www.yobriefca.se/blog/2013/04/28/micro-service-architecture/
http://www.martinfowler.com/bliki/FirstLaw.html
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a call on another system via the network is orders of magnitude slower than a direct 
call within the same process. In addition to the pure latency time, serialization and 
deserialization of parameters and results are time consuming. These processes not 
only take a long time, but also cost CPU capacity.

Moreover, distributed calls might fail because the network is temporarily 
 unavailable or the called server cannot be reached—for instance due to a crash. This 
increases complexity when implementing distributed systems, because the caller has 
to deal with these errors in a sensible manner.

Experience3 teaches us that microservice-based architectures work in spite of 
these problems. When microservices are designed to be especially small, the amount 
of distributed communication increases and the overall system gets slower. This is 
an argument for larger microservices. When a microservice contains a UI and fully 
implements a specific part of the domain, it can operate without calling on other 
microservices in most cases, because all components of this part of the domain are 
implemented within one microservice. The desire to limit distributed communica-
tion is another reason to build systems according to the domain.

Sustainable Architecture

Microservices also use distribution to design architecture in a sustainable manner 
through distribution into individual microservices: it is much more difficult to use a 
microservice than a class. The developer has to deal with the distribution technology 
and has to use the microservice interface. In addition, he or she might have to make 
preparations for tests to include the called microservice or replace it with a stub. 
Finally, he has to contact the team responsible for the respective microservice.

To use a class within a deployment monolith is much simpler—even if the class 
belongs to a completely different part of the monolith and falls within the responsi-
bility of another team. However, because it is so simple to implement a dependency 
between two classes, unintended dependencies tend to accumulate within deploy-
ment monoliths. In the case of microservices dependencies are harder to implement, 
which prevents the creation of unintended dependencies.

Refactoring

However, the boundaries between microservices also create challenges, for instance 
during refactoring. If it becomes apparent that a piece of functionality does not fit 
well within its present microservice, it has to be moved to another microservice. If 
the target microservice is written in a different programming language, this transfer 

3. http://martinfowler.com/articles/distributed-objects-microservices.html

http://www.martinfowler.com/articles/distributed-objects-microservices.html
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inevitably leads to a new implementation. Such problems do not arise when func-
tionalities are moved within a microservice. This consideration may argue for larger 
microservices, and this topic is the focus of section 7.3.

Team Size

The independent deployment of microservices and the division of the development 
effort into teams result in an upper limit for the size of an individual microservice. 
A team should be able to implement features within a microservice and deploy those 
features into production independently of other teams. By ensuring this, the archi-
tecture enables the scaling of development without requiring too much coordination 
effort between the teams.

A team has to be able to implement features independently of the other teams. 
Therefore, at first glance it seems like the microservice should be large enough to 
enable the implementation of different features. When microservices are smaller, 
a team can be responsible for several microservices, which together enable the 
 implementation of a domain. A lower limit for the microservice size does not result 
from the independent deployment and the division into teams.

However, an upper limit does result from it: when a microservice has reached a 
size that prevents its further development by a single team, it is too large. For that 
matter a team should have a size that is especially well suited for agile processes, 
which is  typically three to nine people. Thus a microservice should never grow so 
large that a team of three to nine people cannot develop it further by themselves. 
In addition to the sheer size, the number of features to be implemented in an indi-
vidual microservice plays an important role. Whenever a large number of changes is 
necessary within a short time, a team can rapidly become overloaded. Section 12.2 
highlights alternatives that enable several teams to work on the same microservice. 
However, in general a microservice should never grow so large that several teams are 
necessary to work on it.

Infrastructure

Another important factor influencing the size of a microservice is the infrastructure. 
Each microservice has to be able to be deployed independently. It must have a con-
tinuous delivery pipeline and an infrastructure for running the microservice, which 
has to be present not only in production but also during the different test stages. Also 
databases and application servers might belong to infrastructure. Moreover, there 
has to be a build system for the microservice. The code for the microservice has to be 
versioned independently of that for other microservices. Thus a project within 
 version control has to exist for the microservice.
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Depending on the effort that is necessary to provide the required infrastructure for 
a microservice, the sensible size for a microservice can vary. When a small microser-
vice size is chosen, the system is distributed into many microservices, thus requiring 
more infrastructure. In the case of larger microservices, the system overall contains 
fewer microservices and consequently requires less infrastructure.

Build and deployment of microservices should anyhow be automated. Never-
theless, it can be laborious to provide all necessary infrastructure components for a 
microservice. Once setting up the infrastructure for new microservices is automated, 
the expenditure for providing infrastructures for additional microservices decreases. 
This automation enables further reduction of the microservice size. Companies that 
have been working with microservices for some time usually simplify the creation 
of new microservices by providing the necessary infrastructure in an automated 
manner.

Additionally, some technologies enable reduction of the infrastructure overhead to 
such an extent that substantially smaller microservices are possible—however, with a 
number of limitations in such cases. Such nanoservices are discussed in  Chapter 14, 
“Technologies for Microservices.”

Replaceability

A microservice should be as easy to replace as possible. Replacing a microservice can 
be sensible when its technology becomes outdated or if the microservice code is of 
such bad quality that it cannot be developed any further. The replaceability of 
microservices is an advantage when compared to monolithic applications, which can 
hardly be replaced at all. When a monolith cannot be reasonably maintained any-
more, its development has either to be continued in spite of the associated high costs 
or a similarly cost-intensive migration has to take place. The smaller a microservice 
is, the easier it is to replace it with a new implementation. Above a certain size a 
microservice may be difficult to replace, for it then poses the same challenges as a 
monolith. Replaceability thus limits the size of a microservice.

Transactions and Consistency

Transactions possess the so-called ACID characteristics:

 • Atomicity indicates that a given transaction is either executed completely or 
not at all. In case of an error, all changes are reversed.

 • Consistency means that data is consistent before and after the execution of a 
transaction—database constraints, for instance, are not violated.
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 • Isolation indicates that the operations of transactions are separated from 
each other.

 • Durability indicates permanence: changes to the data are stored and are still 
available after a crash or other interruption of service.

Within a microservice, changes to a transaction can take place. Moreover, the 
consistency of data in a microservice can be guaranteed very easily. Beyond an indi-
vidual microservice, this gets difficult, and overall coordination is necessary. Upon 
the rollback of a transaction all changes made by all microservices would have to be 
reversed. This is laborious and hard to implement, for the delivery of the  decision 
that changes have to be reversed has to be guaranteed. However, communication 
within networks is unreliable. Until it is decided whether a change may take place, 
further changes to the data are barred. If additional changes have taken place, it 
might no longer be possible to reverse a certain change. However, when microser-
vices are kept from introducing data changes for some time, system throughput is 
reduced.

However, when communications occur via messaging systems, transactions are 
possible (see section 8.4). With this approach, transactions are also possible without 
a close link between the microservices.

Consistency

In addition to transactions, data consistency is important. An order, for instance, 
also has to be recorded as revenue. Only then will revenue and order data be 
 consistent. Data consistency can be achieved only through close coordination. Data 
consistency can hardly be guaranteed across microservices. This does not mean that 
the revenue for an order will not be recorded at all. However, it will likely not happen 
exactly at the same point of time and maybe not even within one minute of order 
processing because the communication occurs via the network—and is consequently 
slow and unreliable.

Data changes within a transaction and data consistency are only possible when 
all data being processed is part of the same microservice. Therefore, data changes 
determine the lower size limit for a microservice: when transactions are supposed 
to encompass several microservices and data consistency is required across several 
microservices, the microservices have been designed too small.

Compensation Transactions across Microservices

At least in the case of transactions there is an alternative: if a data change has to be 
rolled back in the end, compensation transactions can be used for that.
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A classic example for a distributed transaction is a travel booking, which consists 
of a hotel, a rental car, and a flight. Either everything has to be booked together or 
nothing at all. Within real systems and also within microservices, this functionality is 
divided into three microservices because the three tasks are very different. Inquiries 
are sent to the different systems whether the desired hotel room, rental car, and flight 
are available. If all are available, everything is reserved. If, for instance, the hotel room 
suddenly becomes unavailable, the reservations for the flight and the rental car have to 
be cancelled. However, in the real world the concerned companies will likely demand 
a fee for the booking cancellation. Due to that, the cancellation is not only a techni-
cal event happening in the background like a transaction rollback but also a business 
process. This is much easier to represent with a compensation transaction. With this 
approach, transactions across several elements in microservice environments can also 
be implemented without the presence of a close technical link. A compensation trans-
action is just a normal service call. Technical as well as business reasons can lead to 
the use of mechanisms such as compensation transactions for microservices.

Summary

In conclusion, the following factors influence the size of a microservice (see 
Figure 3.1):

 • The team size sets an upper limit; a microservice should never be so large that 
one very large team or several teams are required to work on it. Eventually, the 
teams are supposed to work and bring software into production independently 
of each other. This can only be achieved when each team works on a separate 
deployment unit—that is,  a separate microservice. However, one team can 
work on several microservices.

 • Modularization further limits the size of a microservice: The microservice 
should preferably be of a size that enables a developer to understand all its 
aspects and further develop it. Even smaller is of course better. This limit 
is below the team size: whatever one developer can still understand, a team 
should still be able to develop further.

 • Replaceability reduces with the size of the microservice. Therefore, replacea-
bility can influence the upper size limit for a microservice. This limit lies below 
the one set by modularization: when somebody decides to replace a microser-
vice, this person has first of all to be able to understand the microservice.

 • A lower limit is set by infrastructure: if it is too laborious to provide the neces-
sary infrastructure for a microservice, the number of microservices should be 
kept rather small; consequently the size of each microservice will be larger.
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 • Similarly, distributed communication overhead increases with the number of 
microservices. For this reason, the size of microservices should not be set too small.

 • Consistency of data and transactions can only be ensured within a micro-
service. Therefore, microservices should not be so small that consistency and 
transactions must be ensured across several microservices.

These factors not only influence the size of microservices but also reflect a certain 
idea of microservices. According to this idea, the main advantages of microservices 
are independent deployment and the independent work of the different teams, along 
with the replaceability of microservices. The optimal size of a microservice can be 
deduced from these desired features.

However, there are also other reasons for microservices. When microservices are, 
for instance, introduced because of their independent scaling, a microservice size 
has to be chosen that ensures that each microservice is a unit, which has to scale 
independently.

How small or large a microservice can be, cannot be deduced solely from these 
 criteria. This also depends on the technology being used. Especially the effort 
 necessary for providing infrastructure for a microservice and the distributed commu-
nication depends on the utilized technology. Chapter 14 looks at technologies, which 
make the development of very small services possible—denoted as nanoservices. 
These nanoservices have different advantages and disadvantages to microservices, 
which, for instance, are implemented using technologies presented in Chapter 13, 
“Example of a Microservice-based Architecture.”

Ideal Size
of a 

Microservice

Distributed 
Communication

Team Size

Infrastructure

Modularization

Replaceability

Transactions and 
Consistency

Figure 3.1 Factors Influencing the Size of  a Microservice
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Thus, there is no ideal size. The actual microservice size will depend on the tech-
nology and the use case of an individual microservice.

 

Try and Experiment

How great is the effort required for the deployment of a microservice in your 
language, platform, and infrastructure? 

 • Is it just a simple process? Or is it a complex infrastructure containing 
application servers or other infrastructure elements? 

 • How can the effort for the deployment be reduced so that smaller microser-
vices become possible? 

Based on this information you can define a lower limit for the size of a 
microservice. Upper limits depend on team size and modularization, so you 
should also think of appropriate limits in those terms.

 

3.2 Conway’s Law

Conway’s Law4 was coined by the American computer scientist Melvin Edward 
 Conway and indicates the following:

Any organization that designs a system (defined broadly) will produce a design whose 
structure is a copy of the organization’s communication structure.

It is important to know that this law is meant to apply not only to software 
but to any kind of design. The communication structures that Conway mentions, 
do not have to be identical to the organization chart. Often there are informal 
 communication structures, which also have to be considered in this context. In 
addition, the geographical distribution of teams can influence communication. 
After all it is much simpler to talk to a colleague who works in the same room or at 
least in the same office than with one working in a different city or even in a differ-
ent time zone.

4. http://www.melconway.com/research/committees.html

http://www.melconway.com/research/committees.html
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Reasons for the Law

Conway’s Law derives from the fact that each organizational unit designs a specific 
part of the architecture. If two architectural parts have an interface, coordination in 
regards to this interface is required—and, consequently, a communication relation-
ship between the organizational units that are responsible for the respective parts of 
the architecture.

From Conway’s Law it can also be deduced that design modularization is 
 sensible. Via such a design, it is possible to ensure that not every team member has 
to  constantly coordinate with every other team member. Instead the developers 
 working on the same module can closely coordinate their efforts, while team mem-
bers working on different modules only have to coordinate when they develop an 
interface—and even then only in regards to the specific design of the external fea-
tures of this interface.

However, the communication relationships extend beyond that. It is much  easier 
to collaborate with a team within the same building than with a team located in 
another city, another country, or even within a different time zone. Therefore, archi-
tectural parts having numerous communication relationships are better implemented 
by teams that are geographically close to each other, because it is easier for them 
to communicate with each other. In the end, the Conway’s Law focuses not on the 
organization chart but on the real communication relationships.

By the way, Conway postulated that a large organization has numerous commu-
nication relationships. Thus communication becomes more difficult or even impos-
sible in the end. As a consequence, the architecture can be increasingly affected and 
finally break down. In the end, having too many communication relationships is a 
real risk for a project.

The Law as Limitation

Normally Conway’s Law is viewed as a limitation, especially from the perspective of 
software development. Let us assume that a project is modularized according to 
technical aspects (see Figure 3.2). All developers with a UI focus are grouped into one 
team, the developers with backend focus are put into a second team, and data bank 
experts make up the third team. This distribution has the advantage that all three 
teams consist of experts for the respective technology. This makes it easy and trans-
parent to create this type of organization. Moreover, this distribution also appears 
logical. Team members can easily support each other, and technical exchange is also 
facilitated.
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Figure 3.2 Technical Project Distribution

According to Conway’s Law, it follows from such a distribution that the three 
teams will implement three technical layers: a UI, a backend, and a database. The 
chosen distribution corresponds to the organization, which is in fact sensibly built. 
However, this distribution has a decisive disadvantage: a typical feature requires 
changes to UI, backend, and database. The UI has to render the new features for 
the clients, the backend has to implement the logic, and the database has to  create 
structures for the storage of the respective data. This results in the following 
disadvantages:

 • The person wishing to have a feature implemented has to talk to all three 
teams.

 • The teams have to coordinate their work and create new interfaces.

 • The work of the different teams has to be coordinated in a manner that ensures 
that their efforts temporally fit together. The backend, for instance, cannot 
really work without getting input from the database, and the UI cannot work 
without input from the backend.

 • When the teams work in sprints, these dependencies cause time delays: The 
database team generates in its first sprint the necessary changes, within the 
second sprint the backend team implements the logic, and in the third sprint 
the UI is dealt with. Therefore, it takes three sprints to implement a single 
feature.
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In the end this approach creates a large number of dependencies as well as a high 
communication and coordination overhead. Thus this type of organization does 
not make much sense if the main goal is to implement new features as rapidly as 
possible.

Many teams following this approach do not realize its impact on architecture 
and do not consider this aspect further. This type of organization focuses instead 
on the notion that developers with similar skills should be grouped together within 
the organization. This organization becomes an obstacle to a design driven by the 
domain like microservices, whose development is not compatible with the division 
of teams into technical layers.

The Law as Enabler

However, Conway’s Law can also be used to support approaches like microservices. 
If the goal is to develop individual components as independently of each other as 
possible, the system can be distributed into domain components. Based on these 
domain components, teams can be created. Figure 3.3 illustrates this principle: There 
are individual teams for product search, clients, and the order process. These teams 
work on their respective components, which can be technically divided into UI, back-
end, and database. By the way, the domain components are not explicitly named in 
the figure, for they are identical to the team names. Components and teams are syn-
onymous. This approach corresponds to the idea of so-called cross-functional teams, 
as proposed by methods such as Scrum. These teams should encompass different 
roles so that they can cover a large range of tasks. Only a team designed along such 
principles can be in charge of a component—from engineering requirements via 
implementation through to operation.

The division into technical artifacts and the interface between the artifacts can 
then be settled within the teams. In the easiest case, developers only have to talk 
to developers sitting next to them to do so. Between teams, coordination is more 
complex. However, inter-team coordination is not required very often, since features 
are ideally implemented by independent teams. Moreover, this approach creates thin 
interfaces between the components. This avoids laborious coordination across teams 
to define the interface.

Ultimately, the key message to be taken from Conway’s Law is that architecture 
and organization are just two sides of the same coin. When this insight is cleverly 
put to use, the system will have a clear and useful architecture for the project. Archi-
tecture and organization have the common goal to ensure that teams can work in an 
unobstructed manner and with as little coordination overhead as possible.

The clean separation of functionality into components also facilitates mainte-
nance. Since an individual team is responsible for individual functionality and com-
ponent, this distribution will have long-term stability, and consequently the system 
will remain maintainable.
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The teams need requirements to work upon. This means that the teams need to 
contact people who define the requirements. This affects the organization beyond 
the projects, for the requirements come from the departments of the enterprise, and 
these also according to Conway’s Law have to correspond to the team structures 
within the project and the domain architecture. Conway’s Law can be expanded 
beyond software development to the communication structures of the entire organi-
zation, including the users. To put it the other way round: the team structure within 
the project and consequently the architecture of a microservice system can follow 
from the organization of the departments of the enterprise.

The Law and Microservices

The previous discussion highlighted the relationship between architecture and organi-
zation of a project only in a general manner. It would be perfectly conceivable to align 
the architecture along functionalities and devise teams, each of which are in charge for a 
separate functionality without using microservices. In this case the project would 
develop a deployment monolith within which all functionalities are implemented. How-
ever, microservices support this approach. Section 3.1 already discussed that microser-
vices offer technical independence. In conjunction with the division by domains, the 
teams become even more independent of each other and have even less need to coordi-
nate their work. The technical coordination as well as the coordination concerning the 
domains can be reduced to the absolute minimum. This makes it far easier to work in 
parallel on numerous features and also to bring the features in production.
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Microservices as a technical architecture are especially well suited to support the 
approach to devise a Conway’s Law–based distribution of functionalities. In fact, 
exactly this aspect is an essential characteristic of a microservices-based architecture.

However, orienting the architecture according to the communication structures 
entails that a change to the one also requires a change of the other. This makes archi-
tectural changes between microservices more difficult and makes the overall process 
less flexible. Whenever a piece of functionality is moved from one microservice to 
another, this might have the consequence that another team has to take care of this 
functionality from that point on. This type of organizational change renders soft-
ware changes more complex.

As a next step this chapter will address how the distribution by domain can best 
be implemented. Domain-driven design (DDD) is helpful for that.

 

Try and Experiment

Have a look at a project you know:

 • What does the team structure look like? 

 • Is it technically motivated, or is it divided by domain? 

 • Would the structure have to be changed to implement a microservices-
based approach? 

 • How would it have to be changed? 

 • Is there a sensible way to distribute the architecture onto different teams? 
Eventually each team should be in charge of independent domain compo-
nents and be able to implement features relating to them. 

 • Which architectural changes would be necessary? 

 • How laborious would the changes be?
 

3.3 Domain-Driven Design and Bounded Context

In his book of the same title, Eric Evans formulated domain-driven design (DDD)5 as 
pattern language. It is a collection of connected design patterns and supposed to 
support software development especially in complex domains. In the following text, 
the names of design patterns from Evan’s book are written in italics.

5. Eric Evans. 2003. Domain-Driven Design: Tackling Complexity in the Heart of  Software. Boston: 
Addison-Wesley.
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Domain-driven design is important for understanding microservices, for it supports 
the structuring of larger systems according to domains. Exactly such a model is neces-
sary for the division of a system into microservices. Each microservice is meant to con-
stitute a domain, which is designed in such a way that only one microservice has to be 
changed in order to implement changes or to introduce new features. Only then is the 
maximal benefit to be derived from independent development in different teams, as sev-
eral features can be implemented in parallel without the need for extended coordination.

Ubiquitous Language

DDD defines a basis for how a model for a domain can be designed. An essential 
foundation of DDD is Ubiquitous Language. This expression denotes that the soft-
ware should use exactly the same terms as the domain experts. This applies on all 
levels: in regards to code and variable names as well as for database schemas. This 
practice ensures that the software really encompasses and implements the critical 
domain elements. Let us assume for instance that there are express orders in an 
e-commerce system. One possibility would be to generate a Boolean value with the 
name “fast” in the order table. This creates the following problem: domain experts 
have to translate the term “express order,” which they use on a daily basis, into 
“order with a specific Boolean value.” They might not even know what Boolean 
 values are. This renders any discussion of the model more difficult, for terms have to 
be constantly explained and related to each other. The better approach is to call the 
table within the database scheme “express order.” In that case it is completely trans-
parent how the domain terms are implemented in the system.

Building Blocks

To design a domain model, DDD identifies basic patterns:

 • Entity is an object with an individual identity. In an e-commerce application, 
the customer or the items could be examples for Entities. Entities are typically 
stored in databases. However, this is only the technical implementation of the 
concept Entity. An Entity belongs in essence to the domain modeling like the 
other DDD concepts.

 • Value Objects do not have their own identity. An address can be an example 
of a Value Object, for it makes only sense in the context of a specific customer 
and therefore does not have an independent identity.

 • Aggregates are composite domain objects. They facilitate the handling of invari-
ants and other conditions. An order, for instance, can be an Aggregate of order 
lines. This can be used to ensure that an order from a new customer does not 
exceed a certain value. This is a condition that has to be fulfilled by calculating val-
ues from the order lines so that the order as Aggregate can  control these conditions.
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 • Services contain business logic. DDD focuses on modeling business logic as 
Entities, Value Objects, and Aggregates. However, logic accessing several such 
objects cannot be sensibly modeled using these objects. For these cases there 
are Services. The order process could be such a Service, for it needs access to 
items and customers and requires the Entity order.

 • Repositories serve to access all Entities of a type. Typically, there is a persis-
tency technology like a database behind a Repository.

 • Factories are mostly useful to generate complex domain objects. This is espe-
cially the case when these contain for instance many associations.

Aggregates are of special importance in the context of microservices: within an 
Aggregate consistency can be enforced. Because consistency is necessary, parallel 
changes have to be coordinated in an Aggregate. Otherwise two parallel changes 
might endanger consistency. For instance, when two order positions are included in 
parallel into an order, consistency can be endangered. The order has already a value 
of €900 and is maximally allowed to reach €1000. If two order positions of €60 each 
are added in parallel, both might calculate a still acceptable total value of €960 based 
on the initial value of €900. Therefore, changes have to be serialized so that the final 
result of €1020 can be controlled. Accordingly, changes to Aggregates have to be seri-
alized. For this reason, an Aggregate cannot be distributed across two microservices. 
In such a scenario consistency cannot be ensured. Consequently, Aggregates cannot 
be divided between microservices.

Bounded Context

Building blocks such as Aggregate represent for many people the core of DDD. DDD 
describes, along with strategic design, how different domain models interact and 
how more complex systems can be built up this way. This aspect of DDD is probably 
even more important than the building blocks. In any case it is the concept of DDD, 
which influences microservices.

The central element of strategic designs is the Bounded Context. The underly-
ing reasoning is that each domain model is only sensible in certain limits within a 
system. In e-commerce, for instance, number, size, and weight of the ordered items 
are of interest in regards to delivery, for they influence delivery routes and costs. For 
accounting on the other hand prices and tax rates are relevant. A complex system 
consists of several Bounded Contexts. In this it resembles the way complex biological 
organisms are built out of individual cells, which are likewise separate entities with 
their own inner life.  
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Bounded Context: An Example

The customer from the e-commerce system shall serve as an example for a 
Bounded Context (see Figure 3.4). The different Bounded Contexts are Order, 
Delivery, and Billing. The component Order is responsible for the order pro-
cess. The component Delivery implements the delivery process. The compo-
nent Billing generates the bills. 

Delivery

Customer
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Tax rate
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Figure 3.4 Project by Domains

Each of these Bounded Contexts requires certain customer data: 

 • Upon ordering the customer is supposed to be rewarded with points in a 
bonus program. In this Bounded Context the number of the customer has 
to be known to the bonus program. 

 • For Delivery the delivery address and the preferred delivery service of the 
customer are relevant. 

 • Finally, for generating the bill the billing address and the tax rate of the 
customer have to be known. 

In this manner each Bounded Context has its own model of the customer. 
This renders it possible to independently change microservices. If for instance 
more information regarding the customer is necessary for generating bills, 
only changes to the Bounded Context billing are necessary. 

It might be sensible to store basic information concerning the customer in 
a separate Bounded Context. Such fundamental data is probably sensible in 
many Bounded Contexts. To this purpose the Bounded Contexts can cooper-
ate (see below). 

(continued)
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To illustrate the system setup in the different Bounded Contexts a Context Map 
can be used (see section 7.2). Each of the Bounded Contexts then can be imple-
mented within one or several microservices.

Collaboration between Bounded Contexts

How are the individual Bounded Contexts connected? There are different 
possibilities:

 • In case of a Shared Kernel the domain models share some common elements; 
however, in other areas they differ.

 • Customer/Supplier means that a subsystem offers a domain model for the 
caller. The caller in this case is the client who determines the exact setup of the 
model.

 • This is very different in the case of Conformist: The caller uses the same 
model as the subsystem, and the other model is thereby forced upon him. This 
approach is relatively easy, for there is no need for translation. One example 
is a standard software for a certain domain. The developers of this software 
likely know a lot about the domain since they have seen many different use 
cases. The caller can use this model to profit from the knowledge from the 
modeling.

 • The Anticorruption Layer translates a domain model into another one so that 
both are completely decoupled. This enables the integration of legacy systems 
without having to take over the domain models. Often data modeling is not 
very meaningful in legacy systems.

A universal model of the customer, however, is hardly sensible. It would be 
very complex since it would have to contain all information regarding the cus-
tomer. Moreover, each change to customer information, which is necessary in 
a certain context, would concern the universal model. This would render such 
changes very complicated and would probably result in permanent changes 
to the model.
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 • Separate Ways means that the two systems are not integrated, but stay 
 independent of each other.

 • In the case of Open Host Service, the Bounded Context offers special services 
everybody can use. In this way everybody can assemble their own integration. 
This is especially useful when an integration with numerous other systems is 
necessary and when the implementation of these integrations is too laborious.

 • Published Language achieves similar things. It offers a certain domain mod-
eling as a common language between the Bounded Contexts. Since it is widely 
used, this language can hardly be changed anymore afterwards.

Bounded Context and Microservices

Each microservice is meant to model one domain so that new features or changes 
have only to be implemented within one microservice. Such a model can be designed 
based on Bounded Context.

One team can work on one or several Bounded Contexts, which each serve as 
a foundation for one or several microservices. Changes and new features are sup-
posed to concern typically only one Bounded Context—and thus only one team. 
This ensures that teams can work largely independently of each other. A Bounded 
Context can be divided into multiple microservices if that seems sensible. There 
can be technical reasons for that. For example, a certain part of a Bounded Context 
might have to be scaled up to a larger extent than the others. This is simpler if this 
part is separated into its own microservice. However, designing microservices that 
contain multiple Bounded Contexts should be avoided, for this entails that several 
new features might have to be implemented in one microservice. This interferes with 
the goal to develop features independently.

Nevertheless, it is possible that a special requirement comprises many Bounded 
Contexts—in that case additional coordination and communication will be required.

The coordination between teams can be regulated via different collaboration 
possibilities. These influence the independence of the teams as well: Separate Ways, 
Anticorruption Layer or Open Host Service offer a lot of independence. Conformist 
or Customer/Supplier on the other hand tie the domain models very closely together. 
For Customer/Supplier the teams have to coordinate their efforts closely: the supplier 
needs to understand the requirements of the customer. For Conformist, however, the 
teams do not need to coordinate: one team defines the model that the other team just 
uses unchanged (see Figure 3.5).
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As  in the case of Conway’s Law from section 3.2, it becomes very apparent that 
organization and architecture are very closely linked. When the architecture enables 
a distribution of the domains in which the implementation of new features only 
requires changes to a defined part of the architecture, these parts can be distributed 
to different teams in such a way that these teams can work largely independently 
of each other. DDD and especially Bounded Context demonstrate what such a 
 distribution can look like and how the parts can work together and how they have to 
coordinate.

Large-Scale Structure

With large-scale structure, DDD also addresses the question how the system in its 
entirety can be viewed from the different Bounded Contexts with respect to  
microservices.

 • A System Metaphor can serve to define the fundamental structure of the entire 
system. For example, an e-commerce system can orient itself according to 
the shopping process: the customer starts out looking for products, then he/
she will compare items, select one item, and order it. This can give rise to three 
microservices: search, comparison, and order.

 • A Responsibility Layer divides the system into layers with different respon-
sibilities. Layers can call other layers only if  those are located below them. 
This does not refer to a technical division into database, UI and logic. In an 
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 e-commerce system, domain layers might be (for example) the catalog, the 
order process, and billing. The catalog can call on the order process, and 
the order process can call on the generation of the bill. However, calls into 
the other direction are not permitted.

 • Evolving Order suggests it is best not to determine the overall structure too 
rigidly. Instead, the order  should arise from the individual components in a 
stepwise manner.

These approaches can provide an idea how the architecture of a system, which 
consists of different microservices, can be organized (see also Chapter 7, “Architec-
ture of Microservice-based Systems”).

 

Try and Experiment

Look at a project you know: 

 • Which Bounded Contexts can you identify?

 • Generate an overview of the Bounded Contexts in a Context Map. Com-
pare section 7.2.

 • How do the Bounded Contexts cooperate? (Anticorruption Layer  Customer/
Supplier etc.). Add this information to the Context Map.

 • Would other mechanisms have been better at certain places? Why? 

 • How could the Bounded Contexts be sensibly distributed to teams so that 
features are implemented by independent teams?

These questions might be hard to answer because you need to get a new per-
spective on the system and how the domains are modeled in the system.

 

3.4  Why You Should Avoid a Canonical Data 
Model (Stefan Tilkov)

by Stefan Tilkov, innoQ

In recent times, I’ve been involved in a few architecture projects on the enterprise 
level again. If you’ve never been in that world, that is, if you’ve been focusing on 
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individual systems so far, let me give you the gist of what this kind of environment is 
like. There are lots of meetings, more meetings, and even more meetings; there’s an 
abundance of slide decks, packed with text and diagrams—none of that Presenta-
tion Zen nonsense, please. There are conceptual architecture frameworks, showing 
different perspectives; there are guidelines and reference architectures, enterprise-
wide layering approaches, a little bit of SOA and EAI and ESB and portals and 
(lately) API talk thrown in for good measure. Vendors and system integrators and (of 
course) consultants all see their chance to exert influence on strategic decisions, mak-
ing their products or themselves an integral part of the company’s future strategy. It 
can be a very frustrating but (at least sometimes) also very rewarding experience: 
those wheels are very big and really hard to turn, but if you manage to turn them, the 
effect is significant.

It’s also amazing to see how many of the things that cause problems when 
building large systems are repeated on the enterprise level. (We don’t often make 
mistakes … but if  we do, we make them big!) My favorite one is the idea of estab-
lishing a canonical data model (CDM) for all of your interfaces.

If you haven’t heard of this idea before, a quick summary is: Whatever kind of 
technology you’re using (an ESB, a BPM platform, or just some assembly of ser-
vices of some kind), you standardize the data models of the business objects you 
exchange. In its extreme (and very common) form, you end up with having just 
one kind of Person, Customer, Order, Product, etc., with a set of IDs, attributes, 
and associations everyone can agree on. It isn’t hard to understand why that might 
seem a very compelling thing to attempt. After all, even a nontechnical manager will 
understand that the conversion from one data model to another whenever systems 
need to talk to each other is a complete waste of time. It’s obviously a good idea 
to standardize. Then, anyone who happens to have a model that differs from the 
canonical one will have to implement a conversion to and from it just once, new 
systems can just use the CDM directly, and everyone will be able to communicate 
without further ado!

In fact, it’s a horrible, horrible idea. Don’t do it.
In his book on domain-driven design, Eric Evans gave a name to a concept that is 

obvious to anyone who has actually successfully built a larger system: the Bounded 
Context. This is a structuring mechanism that avoids having a single huge model 
for all of your application, simply because that (a) becomes unmanageable and 
(b) makes no sense to begin with. It recognizes that a Person or a Contract are differ-
ent things in different contexts on a conceptual level. This is not an implementation 
problem—it’s reality.

If this is true for a large system—and trust me, it is—it’s infinitely more true for 
an enterprise-wide architecture. Of course you can argue that with a CDM, you’re 
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only standardizing the interface layer, but that doesn’t change a thing. You’re still try-
ing to make everyone agree what a concept means, and my point is that you should 
recognize that not every single system has the same needs.

But isn’t this all just pure theory? Who cares about this, anyway? The amazing 
thing is that organizations are excellent in generating a huge amount of work based 
on bad assumptions. The CDM (in the form I’ve described it here) requires coordi-
nation between all the parties that use a particular object in their interfaces (unless 
you trust that people will be able to just design the right thing from scratch on their 
own, which you should never do). You’ll have meetings with some enterprise archi-
tect and a few representatives for specific systems, trying to agree what a customer 
is. You’ll end up with something that has tons of optional attributes because all the 
participants insisted theirs need to be there, and with lots of things that are kind of 
weird because they reflect some system’s internal restrictions. Despite the fact that 
it’ll take you ages to agree on it, you’ll end up with a zombie interface model will be 
universally hated by everyone who has to work with it.

So is a CDM a universally bad idea? Yes, unless you approach it differently. In 
many cases, I doubt a CDM’s value in the first place and think you are better off with 
a different and less intrusive kind of specification. But if you want a CDM, here are a 
number of things you can do to address the problems you’ll run into:

 • Allow independent parts to be specified independently. If only one system is 
responsible for a particular part of your data model, leave it to the people to 
specify what it looks like canonically. Don’t make them participate in meet-
ings. If you’re unsure whether the data model they create has a significant over-
lap with another group’s, it probably hasn’t.

 • Standardize on formats and possibly fragments of data models. Don’t try to 
come up with a consistent model of the world. Instead, create small buildings 
blocks. What I’m thinking of are e.g. small XML or JSON fragments, akin to 
microformats, that standardize small groups of attributes (I wouldn’t call them 
business objects).

 • Most importantly, don’t push your model from a central team downwards or 
outwards to the individual teams. Instead, it should be the teams who decide 
to “pull” them into their own context when they believe they provide value. It’s 
not you who’s doing the really important stuff (even though that’s a common 
delusion that’s attached to the mighty Enterprise Architect title). Collect the 
data models the individual teams provide in a central location, if you must, 
and make them easy to browse and search. (Think of providing a big elastic 
search index as opposed to a central UML model.)
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What you actually need to do as an enterprise architect is to get out of people’s 
way. In many cases, a crucial ingredient to achieve this is to create as little centrali-
zation as possible. It shouldn’t be your goal to make everyone do the same thing. It 
should be your goal to establish a minimal set of rules that enable people to work 
as independently as possible. A CDM of the kind I’ve described above is the exact 
opposite.

3.5 Microservices with a UI?

This book recommends that you equip microservices with a UI. The UI should offer 
the functionality of the microservice to the user. In this way, all changes in regards to 
one area of functionality can be implemented in one microservice—regardless of 
whether they concern the UI, the logic, or the database. However, microservice 
experts so far have different opinions in regards to the question of whether the inte-
gration of UI into microservices is really required. Ultimately, microservices should 
not be too large. And when logic is supposed to be used by multiple frontends, a 
microservice consisting of pure logic without a UI might be sensible. In addition, it is 
possible to implement the logic and the UI in two different microservices but to have 
them implemented by one team. This enables implementation of features without 
coordination across teams.

Focusing on microservices with a UI puts the main emphasis on the distribution 
of the domain logic instead of a distribution by technical aspects. Many architects 
are not familiar with the domain architecture, which is especially important for 
 microservices-based architectures. Therefore, a design where the microservices contain 
the UI is helpful as a first approach in order to focus the architecture on the domains.

Technical Alternatives

Technically the UI can be implemented as Web UI. When the microservices have a 
RESTful-HTTP interface, the Web-UI and the RESTful-HTTP interface are very 
similar—both use HTTP as a protocol. The RESTful-HTTP interface delivers JSON 
or XML, the Web UI HTML. If the UI is a Single-Page Application, the JavaScript 
code is likewise delivered via HTTP and communicates with the logic via RESTful 
HTTP. In case of mobile clients, the technical implementation is more complicated. 
Section 8.1 explains this in detail. Technically a deployable artifact can deliver via an 
HTTP interface, JSON/XML, and HTML. In this way it implements the UI and 
allows other microservices to access the logic.
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Self-Contained System

Instead of calling this approach “Microservice with UI” you can also call it “Self-
Contained System” (SCS).6 SCS define microservices as having about 100 lines of 
code, of which there might be more than one hundred in a complete project.

An SCS consists of many of those microservices and contains a UI. It should com-
municate with other SCSs asynchronously, if at all. Ideally each functionality should 
be implemented in just one SCS, and there should be no need for SCSs to communi-
cate with each other. An alternative approach might be to integrate the SCSs at the 
UI-level.

In an entire system, there are then only five to 25 of these SCS. An SCS is some-
thing one team can easily deal with. Internally the SCS can be divided into multiple 
microservices.

The following definitions result from this reasoning:

 • SCS is something a team works on and which represents a unit in the domain 
architecture. This can be an order process or a registration. It implements a 
sensible functionality, and the team can supplement the SCS with new features. 
An alternative name for a SCS is a vertical. The SCS distributes the architec-
ture by domain. This is a vertical design in contrast to a horizontal design. A 
horizontal design would divide the system into layers, which are technically 
motivated—for instance UI, logic, or persistence.

 • A microservice is a part of a SCS. It is a technical unit and can be indepen-
dently deployed. This conforms with the microservice definition put forward 
in this book. However,  the size given in the SCS world corresponds to what this 
book denotes as nanoservices (see Chapter 14).

 • This book refers to nanoservices as units that are still individually deploya-
ble but make technical trade-offs in some areas to further reduce the size of 
the deployment units. For that reason, nanoservices do not share all technical 
characteristics of microservices.

SCS inspired the definition of microservices as put forward in this book. Still 
there is no reason not to separate the UI into a different artifact in case the microser-
vice gets otherwise too large. Of course, it is more important that the microservice is 
small and thus maintainable than to integrate the UI. But the UI and logic should at 
least be implemented by the same team.

6. http://scs-architecture.org

http://www.scs-architecture.org
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3.6 Conclusion

Microservices are a modularization approach. For a deeper understanding of micro-
services, the different perspectives discussed in this chapter are very helpful:

 • Section 3.1 focuses on the size of microservices. But a closer look reveals that 
the size of microservices itself is not that important, even though size is an 
influencing factor. However, this perspective provides a first impression of 
what a microservice should be. Team size, modularization, and replace-
ability of microservices each determine an upper size limit. The lower limit 
is determined by transactions, consistency, infrastructure, and distributed 
communication.

 • Conway’s Law (section 3.2) shows that the architecture and organization of a 
project are closely linked—in fact, they are nearly synonymous. Microservices 
can further improve the independence of teams and thus ideally support archi-
tectural designs that aim at the independent development of functionalities. 
Each team is responsible for a microservice and therefore for a certain part of 
a domain, so that the teams are largely independent concerning the implemen-
tation of new functionalities. Thus, in regards to domain logic there is hardly 
any need for coordination across teams. The requirement for technical coor-
dination can likewise be reduced to a minimum because of the possibility for 
technical independence.

 • In section 3.3 domain-driven design provides a very good impression as to 
what the distribution of domains in a project can look like and how the indi-
vidual parts can be coordinated. Each microservice can represent a Bounded 
Context. This is a self-contained piece of domain logic with an independent 
domain model. Between the Bounded Contexts there are different possibilities 
for collaboration.

 • Finally, section 3.5 demonstrates that microservices should contain a UI to be 
able to implement the changes for functionality within an individual microser-
vice. This does not necessarily have to be a deployment unit; however, the UI 
and microservice should be in the responsibility of one team.

Together these different perspectives provide a balanced picture of what consti-
tutes microservices and how they can function.
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Essential Points

To put it differently: A successful project requires three components:

 • an organization (This is supported by Conway’s Law.)

 • a technical approach (This can be microservices.)

 • a domain design as offered by DDD and Bounded Context

The domain design is especially important for the long-term maintainability of 
the system.

 

Try and Experiment

Look at the three approaches for defining microservices: size, Conway's Law, 
and domain-driven design.

 • Section 1.2 showed the most important advantages of microservices. Which 
of the goals to be achieved by microservices are best supported by the 
three definitions? DDD and Conway's Law lead, for instance, to a better 
time-to-market.

 • Which of the three aspects is, in your opinion, the most important? Why?
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